update perflab
This commit is contained in:
parent
b501fb0e3f
commit
4e8eb39c90
23
perf/Makefile
Normal file
23
perf/Makefile
Normal file
@ -0,0 +1,23 @@
|
||||
# Student's Makefile for the CS:APP Performance Lab
|
||||
TEAM = bovik
|
||||
VERSION = 1
|
||||
HANDINDIR =
|
||||
|
||||
CC = gcc
|
||||
CFLAGS = -Wall -O2 -m32
|
||||
LIBS = -lm
|
||||
|
||||
OBJS = driver.o kernels.o fcyc.o clock.o
|
||||
|
||||
all: driver
|
||||
|
||||
driver: $(OBJS) fcyc.h clock.h defs.h config.h
|
||||
$(CC) $(CFLAGS) $(OBJS) $(LIBS) -o driver
|
||||
|
||||
handin:
|
||||
cp kernels.c $(HANDINDIR)/$(TEAM)-$(VERSION)-kernels.c
|
||||
|
||||
clean:
|
||||
-rm -f $(OBJS) driver core *~ *.o
|
||||
|
||||
|
38
perf/README
Normal file
38
perf/README
Normal file
@ -0,0 +1,38 @@
|
||||
#####################################################################
|
||||
# CS:APP Performance Lab
|
||||
#
|
||||
# Student's Source Files
|
||||
#
|
||||
# Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights reserved.
|
||||
# May not be used, modified, or copied without permission.
|
||||
#
|
||||
######################################################################
|
||||
|
||||
This directory contains the files you will need for the CS:APP
|
||||
Performance Lab.
|
||||
|
||||
kernels.c
|
||||
This is the file you will be modifying and handing in.
|
||||
|
||||
#########################################
|
||||
# You shouldn't modify any of these files
|
||||
#########################################
|
||||
driver.c
|
||||
This is the driver that tests the performance of all
|
||||
of the versions of the rotate and smooth kernels
|
||||
in your kernels.c file.
|
||||
|
||||
config.h
|
||||
This is a site-specific configuration file that was created by
|
||||
your instructor for your system.
|
||||
|
||||
defs.h
|
||||
Various definitions needed by kernels.c and driver.c
|
||||
|
||||
clock.{c,h}
|
||||
fcyc.{c,h}
|
||||
These contain timing routines that measure the performance of your
|
||||
code with our k-best measurement scheme using IA32 cycle counters.
|
||||
|
||||
Makefile:
|
||||
This is the makefile that builds the driver program.
|
242
perf/clock.c
Normal file
242
perf/clock.c
Normal file
@ -0,0 +1,242 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/times.h>
|
||||
#include "clock.h"
|
||||
|
||||
/*
|
||||
* Routines for using the cycle counter
|
||||
*/
|
||||
|
||||
/* Detect whether running on Alpha */
|
||||
#ifdef __alpha
|
||||
#define IS_ALPHA 1
|
||||
#else
|
||||
#define IS_ALPHA 0
|
||||
#endif
|
||||
|
||||
/* Detect whether running on x86 */
|
||||
#ifdef __i386__
|
||||
#define IS_x86 1
|
||||
#else
|
||||
#define IS_x86 0
|
||||
#endif
|
||||
|
||||
#if IS_ALPHA
|
||||
/* Initialize the cycle counter */
|
||||
static unsigned cyc_hi = 0;
|
||||
static unsigned cyc_lo = 0;
|
||||
|
||||
|
||||
/* Use Alpha cycle timer to compute cycles. Then use
|
||||
measured clock speed to compute seconds
|
||||
*/
|
||||
|
||||
/*
|
||||
* counterRoutine is an array of Alpha instructions to access
|
||||
* the Alpha's processor cycle counter. It uses the rpcc
|
||||
* instruction to access the counter. This 64 bit register is
|
||||
* divided into two parts. The lower 32 bits are the cycles
|
||||
* used by the current process. The upper 32 bits are wall
|
||||
* clock cycles. These instructions read the counter, and
|
||||
* convert the lower 32 bits into an unsigned int - this is the
|
||||
* user space counter value.
|
||||
* NOTE: The counter has a very limited time span. With a
|
||||
* 450MhZ clock the counter can time things for about 9
|
||||
* seconds. */
|
||||
static unsigned int counterRoutine[] =
|
||||
{
|
||||
0x601fc000u,
|
||||
0x401f0000u,
|
||||
0x6bfa8001u
|
||||
};
|
||||
|
||||
/* Cast the above instructions into a function. */
|
||||
static unsigned int (*counter)(void)= (void *)counterRoutine;
|
||||
|
||||
|
||||
void start_counter()
|
||||
{
|
||||
/* Get cycle counter */
|
||||
cyc_hi = 0;
|
||||
cyc_lo = counter();
|
||||
}
|
||||
|
||||
double get_counter()
|
||||
{
|
||||
unsigned ncyc_hi, ncyc_lo;
|
||||
unsigned hi, lo, borrow;
|
||||
double result;
|
||||
ncyc_lo = counter();
|
||||
ncyc_hi = 0;
|
||||
lo = ncyc_lo - cyc_lo;
|
||||
borrow = lo > ncyc_lo;
|
||||
hi = ncyc_hi - cyc_hi - borrow;
|
||||
result = (double) hi * (1 << 30) * 4 + lo;
|
||||
if (result < 0) {
|
||||
fprintf(stderr, "Error: Cycle counter returning negative value: %.0f\n", result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
#endif /* Alpha */
|
||||
|
||||
#if IS_x86
|
||||
/* $begin x86cyclecounter */
|
||||
/* Initialize the cycle counter */
|
||||
static unsigned cyc_hi = 0;
|
||||
static unsigned cyc_lo = 0;
|
||||
|
||||
|
||||
/* Set *hi and *lo to the high and low order bits of the cycle counter.
|
||||
Implementation requires assembly code to use the rdtsc instruction. */
|
||||
void access_counter(unsigned *hi, unsigned *lo)
|
||||
{
|
||||
asm("rdtsc; movl %%edx,%0; movl %%eax,%1" /* Read cycle counter */
|
||||
: "=r" (*hi), "=r" (*lo) /* and move results to */
|
||||
: /* No input */ /* the two outputs */
|
||||
: "%edx", "%eax");
|
||||
}
|
||||
|
||||
/* Record the current value of the cycle counter. */
|
||||
void start_counter()
|
||||
{
|
||||
access_counter(&cyc_hi, &cyc_lo);
|
||||
}
|
||||
|
||||
/* Return the number of cycles since the last call to start_counter. */
|
||||
double get_counter()
|
||||
{
|
||||
unsigned ncyc_hi, ncyc_lo;
|
||||
unsigned hi, lo, borrow;
|
||||
double result;
|
||||
|
||||
/* Get cycle counter */
|
||||
access_counter(&ncyc_hi, &ncyc_lo);
|
||||
|
||||
/* Do double precision subtraction */
|
||||
lo = ncyc_lo - cyc_lo;
|
||||
borrow = lo > ncyc_lo;
|
||||
hi = ncyc_hi - cyc_hi - borrow;
|
||||
result = (double) hi * (1 << 30) * 4 + lo;
|
||||
if (result < 0) {
|
||||
fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
/* $end x86cyclecounter */
|
||||
#endif /* x86 */
|
||||
|
||||
double ovhd()
|
||||
{
|
||||
/* Do it twice to eliminate cache effects */
|
||||
int i;
|
||||
double result;
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
start_counter();
|
||||
result = get_counter();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* $begin mhz */
|
||||
/* Estimate the clock rate by measuring the cycles that elapse */
|
||||
/* while sleeping for sleeptime seconds */
|
||||
double mhz_full(int verbose, int sleeptime)
|
||||
{
|
||||
double rate;
|
||||
|
||||
start_counter();
|
||||
sleep(sleeptime);
|
||||
rate = get_counter() / (1e6*sleeptime);
|
||||
if (verbose)
|
||||
printf("Processor clock rate ~= %.1f MHz\n", rate);
|
||||
return rate;
|
||||
}
|
||||
/* $end mhz */
|
||||
|
||||
/* Version using a default sleeptime */
|
||||
double mhz(int verbose)
|
||||
{
|
||||
return mhz_full(verbose, 2);
|
||||
}
|
||||
|
||||
/** Special counters that compensate for timer interrupt overhead */
|
||||
|
||||
static double cyc_per_tick = 0.0;
|
||||
|
||||
#define NEVENT 100
|
||||
#define THRESHOLD 1000
|
||||
#define RECORDTHRESH 3000
|
||||
|
||||
/* Attempt to see how much time is used by timer interrupt */
|
||||
static void callibrate(int verbose)
|
||||
{
|
||||
double oldt;
|
||||
struct tms t;
|
||||
clock_t oldc;
|
||||
int e = 0;
|
||||
|
||||
times(&t);
|
||||
oldc = t.tms_utime;
|
||||
start_counter();
|
||||
oldt = get_counter();
|
||||
while (e <NEVENT) {
|
||||
double newt = get_counter();
|
||||
|
||||
if (newt-oldt >= THRESHOLD) {
|
||||
clock_t newc;
|
||||
times(&t);
|
||||
newc = t.tms_utime;
|
||||
if (newc > oldc) {
|
||||
double cpt = (newt-oldt)/(newc-oldc);
|
||||
if ((cyc_per_tick == 0.0 || cyc_per_tick > cpt) && cpt > RECORDTHRESH)
|
||||
cyc_per_tick = cpt;
|
||||
/*
|
||||
if (verbose)
|
||||
printf("Saw event lasting %.0f cycles and %d ticks. Ratio = %f\n",
|
||||
newt-oldt, (int) (newc-oldc), cpt);
|
||||
*/
|
||||
e++;
|
||||
oldc = newc;
|
||||
}
|
||||
oldt = newt;
|
||||
}
|
||||
}
|
||||
/* ifdef added by Sanjit - 10/2001 */
|
||||
#ifdef DEBUG
|
||||
if (verbose)
|
||||
printf("Setting cyc_per_tick to %f\n", cyc_per_tick);
|
||||
#endif
|
||||
}
|
||||
|
||||
static clock_t start_tick = 0;
|
||||
|
||||
void start_comp_counter()
|
||||
{
|
||||
struct tms t;
|
||||
|
||||
if (cyc_per_tick == 0.0)
|
||||
callibrate(1);
|
||||
times(&t);
|
||||
start_tick = t.tms_utime;
|
||||
start_counter();
|
||||
}
|
||||
|
||||
double get_comp_counter()
|
||||
{
|
||||
double time = get_counter();
|
||||
double ctime;
|
||||
struct tms t;
|
||||
clock_t ticks;
|
||||
|
||||
times(&t);
|
||||
ticks = t.tms_utime - start_tick;
|
||||
ctime = time - ticks*cyc_per_tick;
|
||||
/*
|
||||
printf("Measured %.0f cycles. Ticks = %d. Corrected %.0f cycles\n",
|
||||
time, (int) ticks, ctime);
|
||||
*/
|
||||
return ctime;
|
||||
}
|
||||
|
22
perf/clock.h
Normal file
22
perf/clock.h
Normal file
@ -0,0 +1,22 @@
|
||||
/* Routines for using cycle counter */
|
||||
|
||||
/* Start the counter */
|
||||
void start_counter();
|
||||
|
||||
/* Get # cycles since counter started */
|
||||
double get_counter();
|
||||
|
||||
/* Measure overhead for counter */
|
||||
double ovhd();
|
||||
|
||||
/* Determine clock rate of processor (using a default sleeptime) */
|
||||
double mhz(int verbose);
|
||||
|
||||
/* Determine clock rate of processor, having more control over accuracy */
|
||||
double mhz_full(int verbose, int sleeptime);
|
||||
|
||||
/** Special counters that compensate for timer interrupt overhead */
|
||||
|
||||
void start_comp_counter();
|
||||
|
||||
double get_comp_counter();
|
32
perf/config.h
Normal file
32
perf/config.h
Normal file
@ -0,0 +1,32 @@
|
||||
/*********************************************************
|
||||
* config.h - Configuration data for the driver.c program.
|
||||
*********************************************************/
|
||||
#ifndef _CONFIG_H_
|
||||
#define _CONFIG_H_
|
||||
|
||||
/*
|
||||
* CPEs for the baseline (naive) version of the rotate function that
|
||||
* was handed out to the students. Rd is the measured CPE for a dxd
|
||||
* image. Run the driver.c program on your system to get these
|
||||
* numbers.
|
||||
*/
|
||||
#define R64 2.5
|
||||
#define R128 2.9
|
||||
#define R256 6.0
|
||||
#define R512 9.5
|
||||
#define R1024 10.7
|
||||
|
||||
/*
|
||||
* CPEs for the baseline (naive) version of the smooth function that
|
||||
* was handed out to the students. Sd is the measure CPE for a dxd
|
||||
* image. Run the driver.c program on your system to get these
|
||||
* numbers.
|
||||
*/
|
||||
#define S32 38
|
||||
#define S64 39
|
||||
#define S128 39
|
||||
#define S256 39
|
||||
#define S512 40
|
||||
|
||||
|
||||
#endif /* _CONFIG_H_ */
|
38
perf/defs.h
Normal file
38
perf/defs.h
Normal file
@ -0,0 +1,38 @@
|
||||
/*
|
||||
* driver.h - Various definitions for the Performance Lab.
|
||||
*
|
||||
* DO NOT MODIFY ANYTHING IN THIS FILE
|
||||
*/
|
||||
#ifndef _DEFS_H_
|
||||
#define _DEFS_H_
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#define RIDX(i,j,n) ((i)*(n)+(j))
|
||||
|
||||
typedef struct {
|
||||
char *team;
|
||||
char *name1, *email1;
|
||||
char *name2, *email2;
|
||||
} team_t;
|
||||
|
||||
extern team_t team;
|
||||
|
||||
typedef struct {
|
||||
unsigned short red;
|
||||
unsigned short green;
|
||||
unsigned short blue;
|
||||
} pixel;
|
||||
|
||||
typedef void (*lab_test_func) (int, pixel*, pixel*);
|
||||
|
||||
void smooth(int, pixel *, pixel *);
|
||||
void rotate(int, pixel *, pixel *);
|
||||
|
||||
void register_rotate_functions(void);
|
||||
void register_smooth_functions(void);
|
||||
void add_smooth_function(lab_test_func, char*);
|
||||
void add_rotate_function(lab_test_func, char*);
|
||||
|
||||
#endif /* _DEFS_H_ */
|
||||
|
752
perf/driver.c
Normal file
752
perf/driver.c
Normal file
@ -0,0 +1,752 @@
|
||||
/*******************************************************************
|
||||
*
|
||||
* driver.c - Driver program for CS:APP Performance Lab
|
||||
*
|
||||
* In kernels.c, students generate an arbitrary number of rotate and
|
||||
* smooth test functions, which they then register with the driver
|
||||
* program using the add_rotate_function() and add_smooth_function()
|
||||
* functions.
|
||||
*
|
||||
* The driver program runs and measures the registered test functions
|
||||
* and reports their performance.
|
||||
*
|
||||
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights
|
||||
* reserved. May not be used, modified, or copied without permission.
|
||||
*
|
||||
********************************************************************/
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
#include <time.h>
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include "fcyc.h"
|
||||
#include "defs.h"
|
||||
#include "config.h"
|
||||
|
||||
/* Team structure that identifies the students */
|
||||
extern team_t team;
|
||||
|
||||
/* Keep track of a number of different test functions */
|
||||
#define MAX_BENCHMARKS 100
|
||||
#define DIM_CNT 5
|
||||
|
||||
/* Misc constants */
|
||||
#define BSIZE 32 /* cache block size in bytes */
|
||||
#define MAX_DIM 1280 /* 1024 + 256 */
|
||||
#define ODD_DIM 96 /* not a power of 2 */
|
||||
|
||||
/* fast versions of min and max */
|
||||
#define min(a,b) (a < b ? a : b)
|
||||
#define max(a,b) (a > b ? a : b)
|
||||
|
||||
/* This struct characterizes the results for one benchmark test */
|
||||
typedef struct {
|
||||
lab_test_func tfunct; /* The test function */
|
||||
double cpes[DIM_CNT]; /* One CPE result for each dimension */
|
||||
char *description; /* ASCII description of the test function */
|
||||
unsigned short valid; /* The function is tested if this is non zero */
|
||||
} bench_t;
|
||||
|
||||
/* The range of image dimensions that we will be testing */
|
||||
static int test_dim_rotate[] = {64, 128, 256, 512, 1024};
|
||||
static int test_dim_smooth[] = {32, 64, 128, 256, 512};
|
||||
|
||||
/* Baseline CPEs (see config.h) */
|
||||
static double rotate_baseline_cpes[] = {R64, R128, R256, R512, R1024};
|
||||
static double smooth_baseline_cpes[] = {S32, S64, S128, S256, S512};
|
||||
|
||||
/* These hold the results for all benchmarks */
|
||||
static bench_t benchmarks_rotate[MAX_BENCHMARKS];
|
||||
static bench_t benchmarks_smooth[MAX_BENCHMARKS];
|
||||
|
||||
/* These give the sizes of the above lists */
|
||||
static int rotate_benchmark_count = 0;
|
||||
static int smooth_benchmark_count = 0;
|
||||
|
||||
/*
|
||||
* An image is a dimxdim matrix of pixels stored in a 1D array. The
|
||||
* data array holds three images (the input original, a copy of the original,
|
||||
* and the output result array. There is also an additional BSIZE bytes
|
||||
* of padding for alignment to cache block boundaries.
|
||||
*/
|
||||
static pixel data[(3*MAX_DIM*MAX_DIM) + (BSIZE/sizeof(pixel))];
|
||||
|
||||
/* Various image pointers */
|
||||
static pixel *orig = NULL; /* original image */
|
||||
static pixel *copy_of_orig = NULL; /* copy of original for checking result */
|
||||
static pixel *result = NULL; /* result image */
|
||||
|
||||
/* Keep track of the best rotate and smooth score for grading */
|
||||
double rotate_maxmean = 0.0;
|
||||
char *rotate_maxmean_desc = NULL;
|
||||
|
||||
double smooth_maxmean = 0.0;
|
||||
char *smooth_maxmean_desc = NULL;
|
||||
|
||||
|
||||
/******************** Functions begin *************************/
|
||||
|
||||
void add_smooth_function(lab_test_func f, char *description)
|
||||
{
|
||||
benchmarks_smooth[smooth_benchmark_count].tfunct = f;
|
||||
benchmarks_smooth[smooth_benchmark_count].description = description;
|
||||
benchmarks_smooth[smooth_benchmark_count].valid = 0;
|
||||
smooth_benchmark_count++;
|
||||
}
|
||||
|
||||
|
||||
void add_rotate_function(lab_test_func f, char *description)
|
||||
{
|
||||
benchmarks_rotate[rotate_benchmark_count].tfunct = f;
|
||||
benchmarks_rotate[rotate_benchmark_count].description = description;
|
||||
benchmarks_rotate[rotate_benchmark_count].valid = 0;
|
||||
rotate_benchmark_count++;
|
||||
}
|
||||
|
||||
/*
|
||||
* random_in_interval - Returns random integer in interval [low, high)
|
||||
*/
|
||||
static int random_in_interval(int low, int high)
|
||||
{
|
||||
int size = high - low;
|
||||
return (rand()% size) + low;
|
||||
}
|
||||
|
||||
/*
|
||||
* create - creates a dimxdim image aligned to a BSIZE byte boundary
|
||||
*/
|
||||
static void create(int dim)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
/* Align the images to BSIZE byte boundaries */
|
||||
orig = data;
|
||||
while ((unsigned)orig % BSIZE)
|
||||
orig = (pixel *)((char *)orig) + 1;
|
||||
result = orig + dim*dim;
|
||||
copy_of_orig = result + dim*dim;
|
||||
|
||||
for (i = 0; i < dim; i++) {
|
||||
for (j = 0; j < dim; j++) {
|
||||
/* Original image initialized to random colors */
|
||||
orig[RIDX(i,j,dim)].red = random_in_interval(0, 65536);
|
||||
orig[RIDX(i,j,dim)].green = random_in_interval(0, 65536);
|
||||
orig[RIDX(i,j,dim)].blue = random_in_interval(0, 65536);
|
||||
|
||||
/* Copy of original image for checking result */
|
||||
copy_of_orig[RIDX(i,j,dim)].red = orig[RIDX(i,j,dim)].red;
|
||||
copy_of_orig[RIDX(i,j,dim)].green = orig[RIDX(i,j,dim)].green;
|
||||
copy_of_orig[RIDX(i,j,dim)].blue = orig[RIDX(i,j,dim)].blue;
|
||||
|
||||
/* Result image initialized to all black */
|
||||
result[RIDX(i,j,dim)].red = 0;
|
||||
result[RIDX(i,j,dim)].green = 0;
|
||||
result[RIDX(i,j,dim)].blue = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* compare_pixels - Returns 1 if the two arguments don't have same RGB
|
||||
* values, 0 o.w.
|
||||
*/
|
||||
static int compare_pixels(pixel p1, pixel p2)
|
||||
{
|
||||
return
|
||||
(p1.red != p2.red) ||
|
||||
(p1.green != p2.green) ||
|
||||
(p1.blue != p2.blue);
|
||||
}
|
||||
|
||||
|
||||
/* Make sure the orig array is unchanged */
|
||||
static int check_orig(int dim)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < dim; i++)
|
||||
for (j = 0; j < dim; j++)
|
||||
if (compare_pixels(orig[RIDX(i,j,dim)], copy_of_orig[RIDX(i,j,dim)])) {
|
||||
printf("\n");
|
||||
printf("Error: Original image has been changed!\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* check_rotate - Make sure the rotate actually works.
|
||||
* The orig array should not have been tampered with!
|
||||
*/
|
||||
static int check_rotate(int dim)
|
||||
{
|
||||
int err = 0;
|
||||
int i, j;
|
||||
int badi = 0;
|
||||
int badj = 0;
|
||||
pixel orig_bad, res_bad;
|
||||
|
||||
/* return 1 if the original image has been changed */
|
||||
if (check_orig(dim))
|
||||
return 1;
|
||||
|
||||
for (i = 0; i < dim; i++)
|
||||
for (j = 0; j < dim; j++)
|
||||
if (compare_pixels(orig[RIDX(i,j,dim)],
|
||||
result[RIDX(dim-1-j,i,dim)])) {
|
||||
err++;
|
||||
badi = i;
|
||||
badj = j;
|
||||
orig_bad = orig[RIDX(i,j,dim)];
|
||||
res_bad = result[RIDX(dim-1-j,i,dim)];
|
||||
}
|
||||
|
||||
if (err) {
|
||||
printf("\n");
|
||||
printf("ERROR: Dimension=%d, %d errors\n", dim, err);
|
||||
printf("E.g., The following two pixels should have equal value:\n");
|
||||
printf("src[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
|
||||
badi, badj, orig_bad.red, orig_bad.green, orig_bad.blue);
|
||||
printf("dst[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
|
||||
(dim-1-badj), badi, res_bad.red, res_bad.green, res_bad.blue);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static pixel check_average(int dim, int i, int j, pixel *src) {
|
||||
pixel result;
|
||||
int num = 0;
|
||||
int ii, jj;
|
||||
int sum0, sum1, sum2;
|
||||
int top_left_i, top_left_j;
|
||||
int bottom_right_i, bottom_right_j;
|
||||
|
||||
top_left_i = max(i-1, 0);
|
||||
top_left_j = max(j-1, 0);
|
||||
bottom_right_i = min(i+1, dim-1);
|
||||
bottom_right_j = min(j+1, dim-1);
|
||||
|
||||
sum0 = sum1 = sum2 = 0;
|
||||
for(ii=top_left_i; ii <= bottom_right_i; ii++) {
|
||||
for(jj=top_left_j; jj <= bottom_right_j; jj++) {
|
||||
num++;
|
||||
sum0 += (int) src[RIDX(ii,jj,dim)].red;
|
||||
sum1 += (int) src[RIDX(ii,jj,dim)].green;
|
||||
sum2 += (int) src[RIDX(ii,jj,dim)].blue;
|
||||
}
|
||||
}
|
||||
result.red = (unsigned short) (sum0/num);
|
||||
result.green = (unsigned short) (sum1/num);
|
||||
result.blue = (unsigned short) (sum2/num);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* check_smooth - Make sure the smooth function actually works. The
|
||||
* orig array should not have been tampered with!
|
||||
*/
|
||||
static int check_smooth(int dim) {
|
||||
int err = 0;
|
||||
int i, j;
|
||||
int badi = 0;
|
||||
int badj = 0;
|
||||
pixel right, wrong;
|
||||
|
||||
/* return 1 if original image has been changed */
|
||||
if (check_orig(dim))
|
||||
return 1;
|
||||
|
||||
for (i = 0; i < dim; i++) {
|
||||
for (j = 0; j < dim; j++) {
|
||||
pixel smoothed = check_average(dim, i, j, orig);
|
||||
if (compare_pixels(result[RIDX(i,j,dim)], smoothed)) {
|
||||
err++;
|
||||
badi = i;
|
||||
badj = j;
|
||||
wrong = result[RIDX(i,j,dim)];
|
||||
right = smoothed;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (err) {
|
||||
printf("\n");
|
||||
printf("ERROR: Dimension=%d, %d errors\n", dim, err);
|
||||
printf("E.g., \n");
|
||||
printf("You have dst[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
|
||||
badi, badj, wrong.red, wrong.green, wrong.blue);
|
||||
printf("It should be dst[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
|
||||
badi, badj, right.red, right.green, right.blue);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
void func_wrapper(void *arglist[])
|
||||
{
|
||||
pixel *src, *dst;
|
||||
int mydim;
|
||||
lab_test_func f;
|
||||
|
||||
f = (lab_test_func) arglist[0];
|
||||
mydim = *((int *) arglist[1]);
|
||||
src = (pixel *) arglist[2];
|
||||
dst = (pixel *) arglist[3];
|
||||
|
||||
(*f)(mydim, src, dst);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void run_rotate_benchmark(int idx, int dim)
|
||||
{
|
||||
benchmarks_rotate[idx].tfunct(dim, orig, result);
|
||||
}
|
||||
|
||||
void test_rotate(int bench_index)
|
||||
{
|
||||
int i;
|
||||
int test_num;
|
||||
char *description = benchmarks_rotate[bench_index].description;
|
||||
|
||||
for (test_num = 0; test_num < DIM_CNT; test_num++) {
|
||||
int dim;
|
||||
|
||||
/* Check for odd dimension */
|
||||
create(ODD_DIM);
|
||||
run_rotate_benchmark(bench_index, ODD_DIM);
|
||||
if (check_rotate(ODD_DIM)) {
|
||||
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
|
||||
benchmarks_rotate[bench_index].description, ODD_DIM);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Create a test image of the required dimension */
|
||||
dim = test_dim_rotate[test_num];
|
||||
create(dim);
|
||||
#ifdef DEBUG
|
||||
printf("DEBUG: Running benchmark \"%s\"\n", benchmarks_rotate[bench_index].description);
|
||||
#endif
|
||||
|
||||
/* Check that the code works */
|
||||
run_rotate_benchmark(bench_index, dim);
|
||||
if (check_rotate(dim)) {
|
||||
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
|
||||
benchmarks_rotate[bench_index].description, dim);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Measure CPE */
|
||||
{
|
||||
double num_cycles, cpe;
|
||||
int tmpdim = dim;
|
||||
void *arglist[4];
|
||||
double dimension = (double) dim;
|
||||
double work = dimension*dimension;
|
||||
#ifdef DEBUG
|
||||
printf("DEBUG: dimension=%.1f\n",dimension);
|
||||
printf("DEBUG: work=%.1f\n",work);
|
||||
#endif
|
||||
arglist[0] = (void *) benchmarks_rotate[bench_index].tfunct;
|
||||
arglist[1] = (void *) &tmpdim;
|
||||
arglist[2] = (void *) orig;
|
||||
arglist[3] = (void *) result;
|
||||
|
||||
create(dim);
|
||||
num_cycles = fcyc_v((test_funct_v)&func_wrapper, arglist);
|
||||
cpe = num_cycles/work;
|
||||
benchmarks_rotate[bench_index].cpes[test_num] = cpe;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Print results as a table
|
||||
*/
|
||||
printf("Rotate: Version = %s:\n", description);
|
||||
printf("Dim\t");
|
||||
for (i = 0; i < DIM_CNT; i++)
|
||||
printf("\t%d", test_dim_rotate[i]);
|
||||
printf("\tMean\n");
|
||||
|
||||
printf("Your CPEs");
|
||||
for (i = 0; i < DIM_CNT; i++) {
|
||||
printf("\t%.1f", benchmarks_rotate[bench_index].cpes[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("Baseline CPEs");
|
||||
for (i = 0; i < DIM_CNT; i++) {
|
||||
printf("\t%.1f", rotate_baseline_cpes[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
/* Compute Speedup */
|
||||
{
|
||||
double prod, ratio, mean;
|
||||
prod = 1.0; /* Geometric mean */
|
||||
printf("Speedup\t");
|
||||
for (i = 0; i < DIM_CNT; i++) {
|
||||
if (benchmarks_rotate[bench_index].cpes[i] > 0.0) {
|
||||
ratio = rotate_baseline_cpes[i]/
|
||||
benchmarks_rotate[bench_index].cpes[i];
|
||||
}
|
||||
else {
|
||||
printf("Fatal Error: Non-positive CPE value...\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
prod *= ratio;
|
||||
printf("\t%.1f", ratio);
|
||||
}
|
||||
|
||||
/* Geometric mean */
|
||||
mean = pow(prod, 1.0/(double) DIM_CNT);
|
||||
printf("\t%.1f", mean);
|
||||
printf("\n\n");
|
||||
if (mean > rotate_maxmean) {
|
||||
rotate_maxmean = mean;
|
||||
rotate_maxmean_desc = benchmarks_rotate[bench_index].description;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef DEBUG
|
||||
fflush(stdout);
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
void run_smooth_benchmark(int idx, int dim)
|
||||
{
|
||||
benchmarks_smooth[idx].tfunct(dim, orig, result);
|
||||
}
|
||||
|
||||
void test_smooth(int bench_index)
|
||||
{
|
||||
int i;
|
||||
int test_num;
|
||||
char *description = benchmarks_smooth[bench_index].description;
|
||||
|
||||
for(test_num=0; test_num < DIM_CNT; test_num++) {
|
||||
int dim;
|
||||
|
||||
/* Check correctness for odd (non power of two dimensions */
|
||||
create(ODD_DIM);
|
||||
run_smooth_benchmark(bench_index, ODD_DIM);
|
||||
if (check_smooth(ODD_DIM)) {
|
||||
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
|
||||
benchmarks_smooth[bench_index].description, ODD_DIM);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Create a test image of the required dimension */
|
||||
dim = test_dim_smooth[test_num];
|
||||
create(dim);
|
||||
|
||||
#ifdef DEBUG
|
||||
printf("DEBUG: Running benchmark \"%s\"\n", benchmarks_smooth[bench_index].description);
|
||||
#endif
|
||||
/* Check that the code works */
|
||||
run_smooth_benchmark(bench_index, dim);
|
||||
if (check_smooth(dim)) {
|
||||
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
|
||||
benchmarks_smooth[bench_index].description, dim);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Measure CPE */
|
||||
{
|
||||
double num_cycles, cpe;
|
||||
int tmpdim = dim;
|
||||
void *arglist[4];
|
||||
double dimension = (double) dim;
|
||||
double work = dimension*dimension;
|
||||
#ifdef DEBUG
|
||||
printf("DEBUG: dimension=%.1f\n",dimension);
|
||||
printf("DEBUG: work=%.1f\n",work);
|
||||
#endif
|
||||
arglist[0] = (void *) benchmarks_smooth[bench_index].tfunct;
|
||||
arglist[1] = (void *) &tmpdim;
|
||||
arglist[2] = (void *) orig;
|
||||
arglist[3] = (void *) result;
|
||||
|
||||
create(dim);
|
||||
num_cycles = fcyc_v((test_funct_v)&func_wrapper, arglist);
|
||||
cpe = num_cycles/work;
|
||||
benchmarks_smooth[bench_index].cpes[test_num] = cpe;
|
||||
}
|
||||
}
|
||||
|
||||
/* Print results as a table */
|
||||
printf("Smooth: Version = %s:\n", description);
|
||||
printf("Dim\t");
|
||||
for (i = 0; i < DIM_CNT; i++)
|
||||
printf("\t%d", test_dim_smooth[i]);
|
||||
printf("\tMean\n");
|
||||
|
||||
printf("Your CPEs");
|
||||
for (i = 0; i < DIM_CNT; i++) {
|
||||
printf("\t%.1f", benchmarks_smooth[bench_index].cpes[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
printf("Baseline CPEs");
|
||||
for (i = 0; i < DIM_CNT; i++) {
|
||||
printf("\t%.1f", smooth_baseline_cpes[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
/* Compute speedup */
|
||||
{
|
||||
double prod, ratio, mean;
|
||||
prod = 1.0; /* Geometric mean */
|
||||
printf("Speedup\t");
|
||||
for (i = 0; i < DIM_CNT; i++) {
|
||||
if (benchmarks_smooth[bench_index].cpes[i] > 0.0) {
|
||||
ratio = smooth_baseline_cpes[i]/
|
||||
benchmarks_smooth[bench_index].cpes[i];
|
||||
}
|
||||
else {
|
||||
printf("Fatal Error: Non-positive CPE value...\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
prod *= ratio;
|
||||
printf("\t%.1f", ratio);
|
||||
}
|
||||
/* Geometric mean */
|
||||
mean = pow(prod, 1.0/(double) DIM_CNT);
|
||||
printf("\t%.1f", mean);
|
||||
printf("\n\n");
|
||||
if (mean > smooth_maxmean) {
|
||||
smooth_maxmean = mean;
|
||||
smooth_maxmean_desc = benchmarks_smooth[bench_index].description;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
void usage(char *progname)
|
||||
{
|
||||
fprintf(stderr, "Usage: %s [-hqg] [-f <func_file>] [-d <dump_file>]\n", progname);
|
||||
fprintf(stderr, "Options:\n");
|
||||
fprintf(stderr, " -h Print this message\n");
|
||||
fprintf(stderr, " -q Quit after dumping (use with -d )\n");
|
||||
fprintf(stderr, " -g Autograder mode: checks only rotate() and smooth()\n");
|
||||
fprintf(stderr, " -f <file> Get test function names from dump file <file>\n");
|
||||
fprintf(stderr, " -d <file> Emit a dump file <file> for later use with -f\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int i;
|
||||
int quit_after_dump = 0;
|
||||
int skip_teamname_check = 0;
|
||||
int autograder = 0;
|
||||
int seed = 1729;
|
||||
char c = '0';
|
||||
char *bench_func_file = NULL;
|
||||
char *func_dump_file = NULL;
|
||||
|
||||
/* register all the defined functions */
|
||||
register_rotate_functions();
|
||||
register_smooth_functions();
|
||||
|
||||
/* parse command line args */
|
||||
while ((c = getopt(argc, argv, "tgqf:d:s:h")) != -1)
|
||||
switch (c) {
|
||||
|
||||
case 't': /* skip team name check (hidden flag) */
|
||||
skip_teamname_check = 1;
|
||||
break;
|
||||
|
||||
case 's': /* seed for random number generator (hidden flag) */
|
||||
seed = atoi(optarg);
|
||||
break;
|
||||
|
||||
case 'g': /* autograder mode (checks only rotate() and smooth()) */
|
||||
autograder = 1;
|
||||
break;
|
||||
|
||||
case 'q':
|
||||
quit_after_dump = 1;
|
||||
break;
|
||||
|
||||
case 'f': /* get names of benchmark functions from this file */
|
||||
bench_func_file = strdup(optarg);
|
||||
break;
|
||||
|
||||
case 'd': /* dump names of benchmark functions to this file */
|
||||
func_dump_file = strdup(optarg);
|
||||
{
|
||||
int i;
|
||||
FILE *fp = fopen(func_dump_file, "w");
|
||||
|
||||
if (fp == NULL) {
|
||||
printf("Can't open file %s\n",func_dump_file);
|
||||
exit(-5);
|
||||
}
|
||||
|
||||
for(i = 0; i < rotate_benchmark_count; i++) {
|
||||
fprintf(fp, "R:%s\n", benchmarks_rotate[i].description);
|
||||
}
|
||||
for(i = 0; i < smooth_benchmark_count; i++) {
|
||||
fprintf(fp, "S:%s\n", benchmarks_smooth[i].description);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
break;
|
||||
|
||||
case 'h': /* print help message */
|
||||
usage(argv[0]);
|
||||
|
||||
default: /* unrecognized argument */
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
||||
if (quit_after_dump)
|
||||
exit(EXIT_SUCCESS);
|
||||
|
||||
|
||||
/* Print team info */
|
||||
if (!skip_teamname_check) {
|
||||
if (strcmp("bovik", team.team) == 0) {
|
||||
printf("%s: Please fill in the team struct in kernels.c.\n", argv[0]);
|
||||
exit(1);
|
||||
}
|
||||
printf("Teamname: %s\n", team.team);
|
||||
printf("Member 1: %s\n", team.name1);
|
||||
printf("Email 1: %s\n", team.email1);
|
||||
if (*team.name2 || *team.email2) {
|
||||
printf("Member 2: %s\n", team.name2);
|
||||
printf("Email 2: %s\n", team.email2);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
srand(seed);
|
||||
|
||||
/*
|
||||
* If we are running in autograder mode, we will only test
|
||||
* the rotate() and bench() functions.
|
||||
*/
|
||||
if (autograder) {
|
||||
rotate_benchmark_count = 1;
|
||||
smooth_benchmark_count = 1;
|
||||
|
||||
benchmarks_rotate[0].tfunct = rotate;
|
||||
benchmarks_rotate[0].description = "rotate() function";
|
||||
benchmarks_rotate[0].valid = 1;
|
||||
|
||||
benchmarks_smooth[0].tfunct = smooth;
|
||||
benchmarks_smooth[0].description = "smooth() function";
|
||||
benchmarks_smooth[0].valid = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the user specified a file name using -f, then use
|
||||
* the file to determine the versions of rotate and smooth to test
|
||||
*/
|
||||
else if (bench_func_file != NULL) {
|
||||
char flag;
|
||||
char func_line[256];
|
||||
FILE *fp = fopen(bench_func_file, "r");
|
||||
|
||||
if (fp == NULL) {
|
||||
printf("Can't open file %s\n",bench_func_file);
|
||||
exit(-5);
|
||||
}
|
||||
|
||||
while(func_line == fgets(func_line, 256, fp)) {
|
||||
char *func_name = func_line;
|
||||
char **strptr = &func_name;
|
||||
char *token = strsep(strptr, ":");
|
||||
flag = token[0];
|
||||
func_name = strsep(strptr, "\n");
|
||||
#ifdef DEBUG
|
||||
printf("Function Description is %s\n",func_name);
|
||||
#endif
|
||||
|
||||
if (flag == 'R') {
|
||||
for(i=0; i<rotate_benchmark_count; i++) {
|
||||
if (strcmp(benchmarks_rotate[i].description, func_name) == 0)
|
||||
benchmarks_rotate[i].valid = 1;
|
||||
}
|
||||
}
|
||||
else if (flag == 'S') {
|
||||
for(i=0; i<smooth_benchmark_count; i++) {
|
||||
if (strcmp(benchmarks_smooth[i].description, func_name) == 0)
|
||||
benchmarks_smooth[i].valid = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
/*
|
||||
* If the user didn't specify a dump file using -f, then
|
||||
* test all of the functions
|
||||
*/
|
||||
else { /* set all valid flags to 1 */
|
||||
for (i = 0; i < rotate_benchmark_count; i++)
|
||||
benchmarks_rotate[i].valid = 1;
|
||||
for (i = 0; i < smooth_benchmark_count; i++)
|
||||
benchmarks_smooth[i].valid = 1;
|
||||
}
|
||||
|
||||
/* Set measurement (fcyc) parameters */
|
||||
set_fcyc_cache_size(1 << 14); /* 16 KB cache size */
|
||||
set_fcyc_clear_cache(1); /* clear the cache before each measurement */
|
||||
set_fcyc_compensate(1); /* try to compensate for timer overhead */
|
||||
|
||||
for (i = 0; i < rotate_benchmark_count; i++) {
|
||||
if (benchmarks_rotate[i].valid)
|
||||
test_rotate(i);
|
||||
|
||||
}
|
||||
for (i = 0; i < smooth_benchmark_count; i++) {
|
||||
if (benchmarks_smooth[i].valid)
|
||||
test_smooth(i);
|
||||
}
|
||||
|
||||
|
||||
if (autograder) {
|
||||
printf("\nbestscores:%.1f:%.1f:\n", rotate_maxmean, smooth_maxmean);
|
||||
}
|
||||
else {
|
||||
printf("Summary of Your Best Scores:\n");
|
||||
printf(" Rotate: %3.1f (%s)\n", rotate_maxmean, rotate_maxmean_desc);
|
||||
printf(" Smooth: %3.1f (%s)\n", smooth_maxmean, smooth_maxmean_desc);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
270
perf/fcyc.c
Normal file
270
perf/fcyc.c
Normal file
@ -0,0 +1,270 @@
|
||||
/* Compute time used by function f */
|
||||
#include <stdlib.h>
|
||||
#include <sys/times.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "clock.h"
|
||||
#include "fcyc.h"
|
||||
|
||||
#define K 3
|
||||
#define MAXSAMPLES 20
|
||||
#define EPSILON 0.01
|
||||
#define COMPENSATE 0
|
||||
#define CLEAR_CACHE 0
|
||||
#define CACHE_BYTES (1<<19)
|
||||
#define CACHE_BLOCK 32
|
||||
|
||||
static int kbest = K;
|
||||
static int compensate = COMPENSATE;
|
||||
static int clear_cache = CLEAR_CACHE;
|
||||
static int maxsamples = MAXSAMPLES;
|
||||
static double epsilon = EPSILON;
|
||||
static int cache_bytes = CACHE_BYTES;
|
||||
static int cache_block = CACHE_BLOCK;
|
||||
|
||||
static int *cache_buf = NULL;
|
||||
|
||||
static double *values = NULL;
|
||||
static int samplecount = 0;
|
||||
|
||||
#define KEEP_VALS 0
|
||||
#define KEEP_SAMPLES 0
|
||||
|
||||
#if KEEP_SAMPLES
|
||||
static double *samples = NULL;
|
||||
#endif
|
||||
|
||||
/* Start new sampling process */
|
||||
static void init_sampler()
|
||||
{
|
||||
if (values)
|
||||
free(values);
|
||||
values = calloc(kbest, sizeof(double));
|
||||
#if KEEP_SAMPLES
|
||||
if (samples)
|
||||
free(samples);
|
||||
/* Allocate extra for wraparound analysis */
|
||||
samples = calloc(maxsamples+kbest, sizeof(double));
|
||||
#endif
|
||||
samplecount = 0;
|
||||
}
|
||||
|
||||
/* Add new sample. */
|
||||
static void add_sample(double val)
|
||||
{
|
||||
int pos = 0;
|
||||
if (samplecount < kbest) {
|
||||
pos = samplecount;
|
||||
values[pos] = val;
|
||||
} else if (val < values[kbest-1]) {
|
||||
pos = kbest-1;
|
||||
values[pos] = val;
|
||||
}
|
||||
#if KEEP_SAMPLES
|
||||
samples[samplecount] = val;
|
||||
#endif
|
||||
samplecount++;
|
||||
/* Insertion sort */
|
||||
while (pos > 0 && values[pos-1] > values[pos]) {
|
||||
double temp = values[pos-1];
|
||||
values[pos-1] = values[pos];
|
||||
values[pos] = temp;
|
||||
pos--;
|
||||
}
|
||||
}
|
||||
|
||||
/* Have kbest minimum measurements converged within epsilon? */
|
||||
static int has_converged()
|
||||
{
|
||||
return
|
||||
(samplecount >= kbest) &&
|
||||
((1 + epsilon)*values[0] >= values[kbest-1]);
|
||||
}
|
||||
|
||||
/* Code to clear cache */
|
||||
|
||||
|
||||
static volatile int sink = 0;
|
||||
|
||||
static void clear()
|
||||
{
|
||||
int x = sink;
|
||||
int *cptr, *cend;
|
||||
int incr = cache_block/sizeof(int);
|
||||
if (!cache_buf) {
|
||||
cache_buf = malloc(cache_bytes);
|
||||
if (!cache_buf) {
|
||||
fprintf(stderr, "Fatal error. Malloc returned null when trying to clear cache\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
cptr = (int *) cache_buf;
|
||||
cend = cptr + cache_bytes/sizeof(int);
|
||||
while (cptr < cend) {
|
||||
x += *cptr;
|
||||
cptr += incr;
|
||||
}
|
||||
sink = x;
|
||||
}
|
||||
|
||||
double fcyc(test_funct f, int *params)
|
||||
{
|
||||
double result;
|
||||
init_sampler();
|
||||
if (compensate) {
|
||||
do {
|
||||
double cyc;
|
||||
if (clear_cache)
|
||||
clear();
|
||||
start_comp_counter();
|
||||
f(params);
|
||||
cyc = get_comp_counter();
|
||||
add_sample(cyc);
|
||||
} while (!has_converged() && samplecount < maxsamples);
|
||||
} else {
|
||||
do {
|
||||
double cyc;
|
||||
if (clear_cache)
|
||||
clear();
|
||||
start_counter();
|
||||
f(params);
|
||||
cyc = get_counter();
|
||||
add_sample(cyc);
|
||||
} while (!has_converged() && samplecount < maxsamples);
|
||||
}
|
||||
#ifdef DEBUG
|
||||
{
|
||||
int i;
|
||||
printf(" %d smallest values: [", kbest);
|
||||
for (i = 0; i < kbest; i++)
|
||||
printf("%.0f%s", values[i], i==kbest-1 ? "]\n" : ", ");
|
||||
}
|
||||
#endif
|
||||
result = values[0];
|
||||
#if !KEEP_VALS
|
||||
free(values);
|
||||
values = NULL;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/* A version of the above function added so as to pass arguments of
|
||||
any type to the function
|
||||
Added by Sanjit, Fall 2001
|
||||
*/
|
||||
double fcyc_v(test_funct_v f, void *params[])
|
||||
{
|
||||
double result;
|
||||
init_sampler();
|
||||
if (compensate) {
|
||||
do {
|
||||
double cyc;
|
||||
if (clear_cache)
|
||||
clear();
|
||||
start_comp_counter();
|
||||
f(params);
|
||||
cyc = get_comp_counter();
|
||||
add_sample(cyc);
|
||||
} while (!has_converged() && samplecount < maxsamples);
|
||||
} else {
|
||||
do {
|
||||
double cyc;
|
||||
if (clear_cache)
|
||||
clear();
|
||||
start_counter();
|
||||
f(params);
|
||||
cyc = get_counter();
|
||||
add_sample(cyc);
|
||||
} while (!has_converged() && samplecount < maxsamples);
|
||||
}
|
||||
#ifdef DEBUG
|
||||
{
|
||||
int i;
|
||||
printf(" %d smallest values: [", kbest);
|
||||
for (i = 0; i < kbest; i++)
|
||||
printf("%.0f%s", values[i], i==kbest-1 ? "]\n" : ", ");
|
||||
}
|
||||
#endif
|
||||
result = values[0];
|
||||
#if !KEEP_VALS
|
||||
free(values);
|
||||
values = NULL;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/***********************************************************/
|
||||
/* Set the various parameters used by measurement routines */
|
||||
|
||||
|
||||
/* When set, will run code to clear cache before each measurement
|
||||
Default = 0
|
||||
*/
|
||||
void set_fcyc_clear_cache(int clear)
|
||||
{
|
||||
clear_cache = clear;
|
||||
}
|
||||
|
||||
/* Set size of cache to use when clearing cache
|
||||
Default = 1<<19 (512KB)
|
||||
*/
|
||||
void set_fcyc_cache_size(int bytes)
|
||||
{
|
||||
if (bytes != cache_bytes) {
|
||||
cache_bytes = bytes;
|
||||
if (cache_buf) {
|
||||
free(cache_buf);
|
||||
cache_buf = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Set size of cache block
|
||||
Default = 32
|
||||
*/
|
||||
void set_fcyc_cache_block(int bytes) {
|
||||
cache_block = bytes;
|
||||
}
|
||||
|
||||
|
||||
/* When set, will attempt to compensate for timer interrupt overhead
|
||||
Default = 0
|
||||
*/
|
||||
void set_fcyc_compensate(int compensate_arg)
|
||||
{
|
||||
compensate = compensate_arg;
|
||||
}
|
||||
|
||||
/* Value of K in K-best
|
||||
Default = 3
|
||||
*/
|
||||
void set_fcyc_k(int k)
|
||||
{
|
||||
kbest = k;
|
||||
}
|
||||
|
||||
/* Maximum number of samples attempting to find K-best within some tolerance.
|
||||
When exceeded, just return best sample found.
|
||||
Default = 20
|
||||
*/
|
||||
void set_fcyc_maxsamples(int maxsamples_arg)
|
||||
{
|
||||
maxsamples = maxsamples_arg;
|
||||
}
|
||||
|
||||
/* Tolerance required for K-best
|
||||
Default = 0.01
|
||||
*/
|
||||
void set_fcyc_epsilon(double epsilon_arg)
|
||||
{
|
||||
epsilon = epsilon_arg;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
55
perf/fcyc.h
Normal file
55
perf/fcyc.h
Normal file
@ -0,0 +1,55 @@
|
||||
|
||||
/* Fcyc measures the speed of any "test function." Such a function
|
||||
is passed a list of integer parameters, which it may interpret
|
||||
in any way it chooses.
|
||||
*/
|
||||
|
||||
typedef void (*test_funct)(int *);
|
||||
typedef void (*test_funct_v)(void *);
|
||||
|
||||
/* Compute number of cycles used by function f on given set of parameters */
|
||||
double fcyc(test_funct f, int* params);
|
||||
double fcyc_v(test_funct_v f, void* params[]);
|
||||
|
||||
/***********************************************************/
|
||||
/* Set the various parameters used by measurement routines */
|
||||
|
||||
|
||||
/* When set, will run code to clear cache before each measurement
|
||||
Default = 0
|
||||
*/
|
||||
void set_fcyc_clear_cache(int clear);
|
||||
|
||||
/* Set size of cache to use when clearing cache
|
||||
Default = 1<<19 (512KB)
|
||||
*/
|
||||
void set_fcyc_cache_size(int bytes);
|
||||
|
||||
/* Set size of cache block
|
||||
Default = 32
|
||||
*/
|
||||
void set_fcyc_cache_block(int bytes);
|
||||
|
||||
/* When set, will attempt to compensate for timer interrupt overhead
|
||||
Default = 0
|
||||
*/
|
||||
void set_fcyc_compensate(int compensate);
|
||||
|
||||
/* Value of K in K-best
|
||||
Default = 3
|
||||
*/
|
||||
void set_fcyc_k(int k);
|
||||
|
||||
/* Maximum number of samples attempting to find K-best within some tolerance.
|
||||
When exceeded, just return best sample found.
|
||||
Default = 20
|
||||
*/
|
||||
void set_fcyc_maxsamples(int maxsamples);
|
||||
|
||||
/* Tolerance required for K-best
|
||||
Default = 0.01
|
||||
*/
|
||||
void set_fcyc_epsilon(double epsilon);
|
||||
|
||||
|
||||
|
258
perf/kernels.c
Normal file
258
perf/kernels.c
Normal file
@ -0,0 +1,258 @@
|
||||
/********************************************************
|
||||
* Kernels to be optimized for the CS:APP Performance Lab
|
||||
********************************************************/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "defs.h"
|
||||
|
||||
/*
|
||||
* Please fill in the following team struct
|
||||
*/
|
||||
team_t team = {
|
||||
"bovik", /* Team name */
|
||||
|
||||
"Harry Q. Bovik", /* First member full name */
|
||||
"bovik@nowhere.edu", /* First member email address */
|
||||
|
||||
"", /* Second member full name (leave blank if none) */
|
||||
"" /* Second member email addr (leave blank if none) */
|
||||
};
|
||||
|
||||
/***************
|
||||
* ROTATE KERNEL
|
||||
***************/
|
||||
|
||||
/******************************************************
|
||||
* Your different versions of the rotate kernel go here
|
||||
******************************************************/
|
||||
|
||||
/*
|
||||
* naive_rotate - The naive baseline version of rotate
|
||||
*/
|
||||
char naive_rotate_descr[] = "naive_rotate: Naive baseline implementation";
|
||||
void naive_rotate(int dim, pixel *src, pixel *dst)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < dim; i++)
|
||||
for (j = 0; j < dim; j++)
|
||||
dst[RIDX(dim-1-j, i, dim)] = src[RIDX(i, j, dim)];
|
||||
}
|
||||
|
||||
/*
|
||||
* rotate - Your current working version of rotate
|
||||
* IMPORTANT: This is the version you will be graded on
|
||||
*/
|
||||
char rotate_descr[] = "rotate: Current working version";
|
||||
void rotate(int dim, pixel *src, pixel *dst) {
|
||||
for (int i = 0; i < dim; i += 16) {
|
||||
for (int j = 0; j < dim; j++) {
|
||||
dst[RIDX(dim - 1 - j, i, dim)] = src[RIDX(i, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 1, dim)] = src[RIDX(i + 1, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 2, dim)] = src[RIDX(i + 2, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 3, dim)] = src[RIDX(i + 3, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 4, dim)] = src[RIDX(i + 4, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 5, dim)] = src[RIDX(i + 5, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 6, dim)] = src[RIDX(i + 6, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 7, dim)] = src[RIDX(i + 7, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 8, dim)] = src[RIDX(i + 8, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 9, dim)] = src[RIDX(i + 9, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 10, dim)] = src[RIDX(i + 10, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 11, dim)] = src[RIDX(i + 11, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 12, dim)] = src[RIDX(i + 12, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 13, dim)] = src[RIDX(i + 13, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 14, dim)] = src[RIDX(i + 14, j, dim)];
|
||||
dst[RIDX(dim - 1 - j, i + 15, dim)] = src[RIDX(i + 15, j, dim)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
* register_rotate_functions - Register all of your different versions
|
||||
* of the rotate kernel with the driver by calling the
|
||||
* add_rotate_function() for each test function. When you run the
|
||||
* driver program, it will test and report the performance of each
|
||||
* registered test function.
|
||||
*********************************************************************/
|
||||
|
||||
void register_rotate_functions()
|
||||
{
|
||||
add_rotate_function(&naive_rotate, naive_rotate_descr);
|
||||
add_rotate_function(&rotate, rotate_descr);
|
||||
/* ... Register additional test functions here */
|
||||
}
|
||||
|
||||
|
||||
/***************
|
||||
* SMOOTH KERNEL
|
||||
**************/
|
||||
|
||||
/***************************************************************
|
||||
* Various typedefs and helper functions for the smooth function
|
||||
* You may modify these any way you like.
|
||||
**************************************************************/
|
||||
|
||||
/* A struct used to compute averaged pixel value */
|
||||
typedef struct {
|
||||
int red;
|
||||
int green;
|
||||
int blue;
|
||||
int num;
|
||||
} pixel_sum;
|
||||
|
||||
/* Compute min and max of two integers, respectively */
|
||||
static int min(int a, int b) { return (a < b ? a : b); }
|
||||
static int max(int a, int b) { return (a > b ? a : b); }
|
||||
|
||||
/*
|
||||
* initialize_pixel_sum - Initializes all fields of sum to 0
|
||||
*/
|
||||
static void initialize_pixel_sum(pixel_sum *sum)
|
||||
{
|
||||
sum->red = sum->green = sum->blue = 0;
|
||||
sum->num = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* accumulate_sum - Accumulates field values of p in corresponding
|
||||
* fields of sum
|
||||
*/
|
||||
static void accumulate_sum(pixel_sum *sum, pixel p)
|
||||
{
|
||||
sum->red += (int) p.red;
|
||||
sum->green += (int) p.green;
|
||||
sum->blue += (int) p.blue;
|
||||
sum->num++;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* assign_sum_to_pixel - Computes averaged pixel value in current_pixel
|
||||
*/
|
||||
static void assign_sum_to_pixel(pixel *current_pixel, pixel_sum sum)
|
||||
{
|
||||
current_pixel->red = (unsigned short) (sum.red/sum.num);
|
||||
current_pixel->green = (unsigned short) (sum.green/sum.num);
|
||||
current_pixel->blue = (unsigned short) (sum.blue/sum.num);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* avg - Returns averaged pixel value at (i,j)
|
||||
*/
|
||||
static pixel avg(int dim, int i, int j, pixel *src)
|
||||
{
|
||||
int ii, jj;
|
||||
pixel_sum sum;
|
||||
pixel current_pixel;
|
||||
|
||||
initialize_pixel_sum(&sum);
|
||||
for(ii = max(i-1, 0); ii <= min(i+1, dim-1); ii++)
|
||||
for(jj = max(j-1, 0); jj <= min(j+1, dim-1); jj++)
|
||||
accumulate_sum(&sum, src[RIDX(ii, jj, dim)]);
|
||||
|
||||
assign_sum_to_pixel(¤t_pixel, sum);
|
||||
return current_pixel;
|
||||
}
|
||||
|
||||
/******************************************************
|
||||
* Your different versions of the smooth kernel go here
|
||||
******************************************************/
|
||||
|
||||
/*
|
||||
* naive_smooth - The naive baseline version of smooth
|
||||
*/
|
||||
char naive_smooth_descr[] = "naive_smooth: Naive baseline implementation";
|
||||
void naive_smooth(int dim, pixel *src, pixel *dst)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < dim; i++)
|
||||
for (j = 0; j < dim; j++)
|
||||
{
|
||||
dst[RIDX(i, j, dim)] = avg(dim, i, j, src);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* smooth - Your current working version of smooth.
|
||||
* IMPORTANT: This is the version you will be graded on
|
||||
*/
|
||||
char smooth_descr[] = "smooth: Current working version";
|
||||
void smooth(int dim, pixel *src, pixel *dst) {
|
||||
int r = 0, g = 0, b = 0;
|
||||
#define set_pixel(i, j, div) dst[RIDX(i, j, dim)].red = r / div, dst[RIDX(i, j, dim)].green = g / div, dst[RIDX(i, j, dim)].blue = b / div
|
||||
#define add_pixel(i, j) r += src[RIDX(i, j, dim)].red, g += src[RIDX(i, j, dim)].green, b += src[RIDX(i, j, dim)].blue
|
||||
#define add_pixel2(i, j) add_pixel(i, j), add_pixel(i + 1, j)
|
||||
#define add_pixel3(i, j) add_pixel(i - 1, j), add_pixel2(i, j)
|
||||
#define sub_pixel(i, j) r -= src[RIDX(i, j, dim)].red, g -= src[RIDX(i, j, dim)].green, b -= src[RIDX(i, j, dim)].blue
|
||||
#define sub_pixel2(i, j) sub_pixel(i, j), sub_pixel(i + 1, j)
|
||||
#define sub_pixel3(i, j) sub_pixel(i - 1, j), sub_pixel2(i, j)
|
||||
add_pixel2(0, 0);
|
||||
add_pixel2(0, 1);
|
||||
set_pixel(0, 0, 4);
|
||||
for (int i = 1; i < dim - 1; i += 2) {
|
||||
add_pixel2(0, i + 1);
|
||||
set_pixel(0, i, 6);
|
||||
sub_pixel2(0, i - 1);
|
||||
add_pixel2(0, i + 2);
|
||||
set_pixel(0, i + 1, 6);
|
||||
sub_pixel2(0, i);
|
||||
}
|
||||
set_pixel(0, dim - 1, 4);
|
||||
|
||||
for (int i = 1; i < dim - 1; i++) {
|
||||
r = g = b = 0;
|
||||
add_pixel3(i, 0);
|
||||
add_pixel3(i, 1);
|
||||
set_pixel(i, 0, 6);
|
||||
for (int j = 1; j < dim - 1; j += 2) {
|
||||
add_pixel3(i, j + 1);
|
||||
set_pixel(i, j, 9);
|
||||
sub_pixel3(i, j - 1);
|
||||
add_pixel3(i, j + 2);
|
||||
set_pixel(i, j + 1, 9);
|
||||
sub_pixel3(i, j);
|
||||
}
|
||||
set_pixel(i, dim - 1, 6);
|
||||
}
|
||||
|
||||
r = g = b = 0;
|
||||
add_pixel2(dim - 2, 0);
|
||||
add_pixel2(dim - 2, 1);
|
||||
set_pixel(dim - 1, 0, 4);
|
||||
for (int i = 1; i < dim - 1; i += 2) {
|
||||
add_pixel2(dim - 2, i + 1);
|
||||
set_pixel(dim - 1, i, 6);
|
||||
sub_pixel2(dim - 2, i - 1);
|
||||
add_pixel2(dim - 2, i + 2);
|
||||
set_pixel(dim - 1, i + 1, 6);
|
||||
sub_pixel2(dim - 2, i);
|
||||
}
|
||||
set_pixel(dim - 1, dim - 1, 4);
|
||||
#undef set_pixel
|
||||
#undef add_pixel
|
||||
#undef add_pixel2
|
||||
#undef add_pixel3
|
||||
#undef sub_pixel
|
||||
#undef sub_pixel2
|
||||
#undef sub_pixel3
|
||||
}
|
||||
|
||||
|
||||
/*********************************************************************
|
||||
* register_smooth_functions - Register all of your different versions
|
||||
* of the smooth kernel with the driver by calling the
|
||||
* add_smooth_function() for each test function. When you run the
|
||||
* driver program, it will test and report the performance of each
|
||||
* registered test function.
|
||||
*********************************************************************/
|
||||
|
||||
void register_smooth_functions() {
|
||||
add_smooth_function(&smooth, smooth_descr);
|
||||
add_smooth_function(&naive_smooth, naive_smooth_descr);
|
||||
/* ... Register additional test functions here */
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user