mirror of
https://github.com/pocketpy/pocketpy
synced 2025-10-20 11:30:18 +00:00
Adding improvements to bisect.py
This commit is contained in:
parent
38d9a77c9a
commit
11b8b923fc
145
python/bisect.py
145
python/bisect.py
@ -1,72 +1,123 @@
|
||||
"""Bisection algorithms."""
|
||||
|
||||
def insort_right(a, x, lo=0, hi=None):
|
||||
"""Insert item x in list a, and keep it sorted assuming a is sorted.
|
||||
|
||||
If x is already in a, insert it to the right of the rightmost x.
|
||||
|
||||
Optional args lo (default 0) and hi (default len(a)) bound the
|
||||
slice of a to be searched.
|
||||
"""
|
||||
|
||||
lo = bisect_right(a, x, lo, hi)
|
||||
a.insert(lo, x)
|
||||
|
||||
"""
|
||||
Optimized bisection algorithms for sorted list insertions.
|
||||
These functions provide efficient binary search implementations for finding insertion points
|
||||
in sorted sequences and inserting elements while maintaining sorted order.
|
||||
"""
|
||||
def bisect_right(a, x, lo=0, hi=None):
|
||||
"""Return the index where to insert item x in list a, assuming a is sorted.
|
||||
|
||||
|
||||
The return value i is such that all e in a[:i] have e <= x, and all e in
|
||||
a[i:] have e > x. So if x already appears in the list, a.insert(x) will
|
||||
insert just after the rightmost x already there.
|
||||
|
||||
Optional args lo (default 0) and hi (default len(a)) bound the
|
||||
slice of a to be searched.
|
||||
a[i:] have e > x. So if x already appears in the list, the insertion
|
||||
point will be after (to the right of) any existing entries.
|
||||
|
||||
Args:
|
||||
a: A sorted list-like object supporting comparison and __len__
|
||||
x: The item to be inserted
|
||||
lo: Lower bound of the slice to be searched (inclusive)
|
||||
hi: Upper bound of the slice to be searched (exclusive)
|
||||
|
||||
Returns:
|
||||
The index where x should be inserted to maintain sorted order
|
||||
|
||||
Raises:
|
||||
ValueError: If lo is negative
|
||||
"""
|
||||
|
||||
if lo < 0:
|
||||
raise ValueError('lo must be non-negative')
|
||||
|
||||
if hi is None:
|
||||
hi = len(a)
|
||||
|
||||
# Fast path for common case: appending to the end
|
||||
if hi > 0 and hi == len(a) and x > a[-1]:
|
||||
return hi
|
||||
|
||||
# Normal binary search
|
||||
while lo < hi:
|
||||
mid = (lo+hi)//2
|
||||
if x < a[mid]: hi = mid
|
||||
else: lo = mid+1
|
||||
mid = (lo + hi) // 2
|
||||
if x < a[mid]:
|
||||
hi = mid
|
||||
else:
|
||||
lo = mid + 1
|
||||
|
||||
return lo
|
||||
|
||||
def insort_left(a, x, lo=0, hi=None):
|
||||
"""Insert item x in list a, and keep it sorted assuming a is sorted.
|
||||
|
||||
If x is already in a, insert it to the left of the leftmost x.
|
||||
|
||||
Optional args lo (default 0) and hi (default len(a)) bound the
|
||||
slice of a to be searched.
|
||||
"""
|
||||
|
||||
lo = bisect_left(a, x, lo, hi)
|
||||
a.insert(lo, x)
|
||||
|
||||
|
||||
def bisect_left(a, x, lo=0, hi=None):
|
||||
"""Return the index where to insert item x in list a, assuming a is sorted.
|
||||
|
||||
|
||||
The return value i is such that all e in a[:i] have e < x, and all e in
|
||||
a[i:] have e >= x. So if x already appears in the list, a.insert(x) will
|
||||
insert just before the leftmost x already there.
|
||||
|
||||
Optional args lo (default 0) and hi (default len(a)) bound the
|
||||
slice of a to be searched.
|
||||
a[i:] have e >= x. So if x already appears in the list, the insertion
|
||||
point will be before (to the left of) any existing entries.
|
||||
|
||||
Args:
|
||||
a: A sorted list-like object supporting comparison and __len__
|
||||
x: The item to be inserted
|
||||
lo: Lower bound of the slice to be searched (inclusive)
|
||||
hi: Upper bound of the slice to be searched (exclusive)
|
||||
|
||||
Returns:
|
||||
The index where x should be inserted to maintain sorted order
|
||||
|
||||
Raises:
|
||||
ValueError: If lo is negative
|
||||
"""
|
||||
|
||||
if lo < 0:
|
||||
raise ValueError('lo must be non-negative')
|
||||
|
||||
if hi is None:
|
||||
hi = len(a)
|
||||
|
||||
# Fast path for common case: appending to the end
|
||||
if hi > 0 and hi == len(a) and x > a[-1]:
|
||||
return hi
|
||||
|
||||
# Fast path for common case: inserting at the beginning
|
||||
if lo == 0 and hi > 0 and x < a[0]:
|
||||
return 0
|
||||
|
||||
# Normal binary search
|
||||
while lo < hi:
|
||||
mid = (lo+hi)//2
|
||||
if a[mid] < x: lo = mid+1
|
||||
else: hi = mid
|
||||
mid = (lo + hi) // 2
|
||||
if a[mid] < x:
|
||||
lo = mid + 1
|
||||
else:
|
||||
hi = mid
|
||||
|
||||
return lo
|
||||
|
||||
# Create aliases
|
||||
|
||||
def insort_right(a, x, lo=0, hi=None):
|
||||
"""Insert item x in list a, and keep it sorted assuming a is sorted.
|
||||
|
||||
If x is already in a, insert it to the right of the rightmost x.
|
||||
|
||||
Args:
|
||||
a: A sorted list-like object supporting comparison, __len__, and insert
|
||||
x: The item to be inserted
|
||||
lo: Lower bound of the slice to be searched (inclusive)
|
||||
hi: Upper bound of the slice to be searched (exclusive)
|
||||
"""
|
||||
# Use bisect_right to find the insertion point
|
||||
insertion_point = bisect_right(a, x, lo, hi)
|
||||
a.insert(insertion_point, x)
|
||||
|
||||
|
||||
def insort_left(a, x, lo=0, hi=None):
|
||||
"""Insert item x in list a, and keep it sorted assuming a is sorted.
|
||||
|
||||
If x is already in a, insert it to the left of the leftmost x.
|
||||
|
||||
Args:
|
||||
a: A sorted list-like object supporting comparison, __len__, and insert
|
||||
x: The item to be inserted
|
||||
lo: Lower bound of the slice to be searched (inclusive)
|
||||
hi: Upper bound of the slice to be searched (exclusive)
|
||||
"""
|
||||
# Use bisect_left to find the insertion point
|
||||
insertion_point = bisect_left(a, x, lo, hi)
|
||||
a.insert(insertion_point, x)
|
||||
|
||||
# Create aliases for backward compatibility
|
||||
bisect = bisect_right
|
||||
insort = insort_right
|
||||
|
Loading…
x
Reference in New Issue
Block a user