modify the implementation to self referenced for better performance

This commit is contained in:
ykiko 2024-02-19 00:23:17 +08:00
parent 93bea3dcd5
commit 8aa0177932

View File

@ -178,243 +178,256 @@ public:
} // namespace pkpy
namespace pkpy {
namespace pkpy
{
// explicitly mark a type as trivially relocatable for better performance
template <typename T> struct TriviallyRelocatable {
template<typename T>
struct TriviallyRelocatable
{
constexpr static bool value =
std::is_trivially_copyable_v<T> && std::is_trivially_destructible_v<T>;
};
template <typename T>
template<typename T>
constexpr inline bool is_trivially_relocatable_v =
TriviallyRelocatable<T>::value;
template<typename T>
struct TriviallyRelocatable<std::shared_ptr<T>>{
struct TriviallyRelocatable<std::shared_ptr<T>>
{
constexpr static bool value = true;
};
template<typename T>
struct TriviallyRelocatable<std::vector<T>>{
constexpr static bool value = true;
};
// the implementation of small_vector
template <typename T, std::size_t N> class small_vector {
template<typename T, std::size_t N>
class small_vector
{
public:
union Internal {
T *begin;
alignas(T) char buffer[sizeof(T) * N];
} m_internal;
int m_capacity;
int m_size;
alignas(T) char m_buffer[sizeof(T) * N];
T* m_begin;
T* m_end;
T* m_max;
public:
using value_type = T;
using size_type = int;
using difference_type = int;
using reference = T &;
using const_reference = const T &;
using pointer = T *;
using const_pointer = const T *;
using iterator = T *;
using const_iterator = const T *;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using iterator = T*;
using const_iterator = const T*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
bool is_small() const { return m_capacity == N; }
[[nodiscard]] bool is_small() const { return m_begin == reinterpret_cast<const T*>(m_buffer); }
size_type size() const { return m_size; }
[[nodiscard]] size_type size() const { return m_end - m_begin; }
size_type capacity() const { return m_capacity; }
[[nodiscard]] size_type capacity() const { return m_max - m_begin; }
bool empty() const { return m_size == 0; }
[[nodiscard]] bool empty() const { return m_begin == m_end; }
pointer data() {
return is_small() ? reinterpret_cast<T *>(m_internal.buffer)
: m_internal.begin;
}
pointer data() { return m_begin; }
const_pointer data() const {
return is_small() ? reinterpret_cast<const T *>(m_internal.buffer)
: m_internal.begin;
}
const_pointer data() const { return m_begin; }
reference operator[](size_type index) { return data()[index]; }
const_reference operator[](size_type index) const { return data()[index]; }
reference front() { return data()[0]; }
iterator begin() { return m_begin; }
const_reference front() const { return data()[0]; }
const_iterator begin() const { return m_begin; }
reference back() { return data()[m_size - 1]; }
const_iterator cbegin() const { return m_begin; }
const_reference back() const { return data()[m_size - 1]; }
iterator end() { return m_end; }
iterator begin() { return data(); }
const_iterator end() const { return m_end; }
const_iterator begin() const { return data(); }
const_iterator cend() const { return m_end; }
const_iterator cbegin() const { return data(); }
reference front() { return *begin(); }
iterator end() { return data() + m_size; }
const_reference front() const { return *begin(); }
const_iterator end() const { return data() + m_size; }
reference back() { return *(end() - 1); }
const_iterator cend() const { return data() + m_size; }
const_reference back() const { return *(end() - 1); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(end());
}
const_reverse_iterator crbegin() const {
const_reverse_iterator crbegin() const
{
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
const_reverse_iterator crend() const {
const_reverse_iterator crend() const
{
return const_reverse_iterator(begin());
}
private:
static void uninitialized_copy_n(const void *src, size_type n, void *dest) {
if constexpr (std::is_trivially_copyable_v<T>) {
static void uninitialized_copy_n(const void* src, size_type n, void* dest)
{
if constexpr (std::is_trivially_copyable_v<T>)
{
std::memcpy(dest, src, sizeof(T) * n);
} else {
for (size_type i = 0; i < n; i++) {
::new ((T *)dest + i) T(*((const T *)src + i));
}
else
{
for (size_type i = 0; i < n; i++)
{
::new((T*) dest + i) T(*((const T*) src + i));
}
}
}
static void uninitialized_relocate_n(void *src, size_type n, void *dest) {
if constexpr (is_trivially_relocatable_v<T>) {
static void uninitialized_relocate_n(void* src, size_type n, void* dest)
{
if constexpr (is_trivially_relocatable_v<T>)
{
std::memcpy(dest, src, sizeof(T) * n);
} else {
for (size_type i = 0; i < n; i++) {
::new ((T *)dest + i) T(std::move(*((T *)src + i)));
((T *)src + i)->~T();
}
else
{
for (size_type i = 0; i < n; i++)
{
::new((T*) dest + i) T(std::move(*((T*) src + i)));
((T*) src + i)->~T();
}
}
}
public:
small_vector() : m_capacity(N), m_size(0) {}
small_vector() : m_begin(reinterpret_cast<T*>(m_buffer)), m_end(m_begin), m_max(m_begin + N) {}
small_vector(const small_vector &other) noexcept
: m_capacity(other.m_capacity), m_size(other.m_size) {
if (other.is_small()) {
uninitialized_copy_n(other.m_internal.buffer, other.m_size,
m_internal.buffer);
} else {
m_internal.begin = (pointer)std::malloc(sizeof(T) * m_capacity);
uninitialized_copy_n(other.m_internal.begin, other.m_size,
m_internal.begin);
}
small_vector(const small_vector& other) noexcept
{
const auto size = other.size();
const auto capacity = other.capacity();
m_begin = reinterpret_cast<T*>(other.is_small() ? m_buffer : std::malloc(sizeof(T) * capacity));
uninitialized_copy_n(other.begin, size, this->m_begin);
m_end = m_begin + size;
m_max = m_begin + capacity;
}
small_vector(small_vector &&other) noexcept
: m_capacity(other.m_capacity), m_size(other.m_size) {
if (other.is_small()) {
uninitialized_relocate_n(other.m_internal.buffer, other.m_size,
m_internal.buffer);
} else {
m_internal.begin = other.m_internal.begin;
other.m_capacity = N;
small_vector(small_vector&& other) noexcept
{
if(other.is_small())
{
m_begin = reinterpret_cast<T*>(m_buffer);
uninitialized_relocate_n(other.m_buffer, other.size(), m_buffer);
m_end = m_begin + other.size();
m_max = m_begin + N;
}
other.m_size = 0;
else
{
m_begin = other.m_begin;
m_end = other.m_end;
m_max = other.m_max;
}
other.m_begin = reinterpret_cast<T*>(other.m_buffer);
other.m_end = other.m_begin;
other.m_max = other.m_begin + N;
}
small_vector &operator=(const small_vector &other) noexcept {
if (this != &other) {
small_vector& operator=(const small_vector& other) noexcept
{
if (this != &other)
{
~small_vector();
if (other.is_small()) {
uninitialized_copy_n(other.m_internal.buffer, other.m_size,
m_internal.buffer);
} else {
m_internal.begin = (pointer)std::malloc(sizeof(T) * other.m_capacity);
uninitialized_copy_n(other.m_internal.begin, other.m_size,
m_internal.begin);
}
m_capacity = other.m_capacity;
m_size = other.m_size;
::new (this) small_vector(other);
}
return *this;
}
small_vector &operator=(small_vector &&other) noexcept {
if (this != &other) {
small_vector& operator=(small_vector&& other) noexcept
{
if (this != &other)
{
~small_vector();
if (other.is_small()) {
uninitialized_relocate_n(other.m_internal.buffer, other.m_size,
m_internal.buffer);
} else {
m_internal.begin = other.m_internal.begin;
}
m_capacity = other.m_capacity;
m_size = other.m_size;
other.m_capacity = N;
other.m_size = 0;
:: new (this) small_vector(std::move(other));
}
return *this;
}
~small_vector() {
std::destroy_n(data(), m_size);
if (!is_small()) {
std::free(m_internal.begin);
~small_vector()
{
std::destroy(m_begin, m_end);
if (!is_small())
{
std::free(m_begin);
}
}
template <typename... Args> void emplace_back(Args &&...args) noexcept {
if (m_size == m_capacity) {
auto new_capacity = m_capacity * 2;
if (!is_small()) {
if constexpr (is_trivially_relocatable_v<T>) {
m_internal.begin =
(pointer)std::realloc(m_internal.begin, sizeof(T) * new_capacity);
} else {
auto new_data = (pointer)std::malloc(sizeof(T) * new_capacity);
uninitialized_relocate_n(m_internal.begin, m_size, new_data);
std::free(m_internal.begin);
m_internal.begin = new_data;
template<typename... Args>
void emplace_back(Args&& ...args) noexcept
{
if (m_end == m_max)
{
const auto new_capacity = capacity() * 2;
const auto size = this->size();
if (!is_small())
{
if constexpr (is_trivially_relocatable_v<T>)
{
m_begin = (pointer)std::realloc(m_begin, sizeof(T) * new_capacity);
}
else
{
auto new_data = (pointer) std::malloc(sizeof(T) * new_capacity);
uninitialized_relocate_n(m_begin, size, new_data);
std::free(m_begin);
m_begin = new_data;
}
} else {
auto new_data = (pointer)std::malloc(sizeof(T) * new_capacity);
uninitialized_relocate_n(m_internal.buffer, m_size, new_data);
m_internal.begin = new_data;
}
m_capacity = new_capacity;
else
{
auto new_data = (pointer) std::malloc(sizeof(T) * new_capacity);
uninitialized_relocate_n(m_buffer, size, new_data);
m_begin = new_data;
}
m_end = m_begin + size;
m_max = m_begin + new_capacity;
}
::new (data() + m_size) T(std::forward<Args>(args)...);
m_size++;
::new(m_end) T(std::forward<Args>(args)...);
m_end++;
}
void push_back(const T &value) { emplace_back(value); }
void push_back(const T& value) { emplace_back(value); }
void push_back(T &&value) { emplace_back(std::move(value)); }
void push_back(T&& value) { emplace_back(std::move(value)); }
void pop_back() {
m_size--;
if constexpr (!std::is_trivially_destructible_v<T>) {
(data() + m_size)->~T();
void pop_back()
{
m_end--;
if constexpr (!std::is_trivially_destructible_v<T>)
{
m_end->~T();
}
}
void clear() {
std::destroy_n(data(), m_size);
m_size = 0;
void clear()
{
std::destroy(m_begin, m_end);
m_end = m_begin;
}
};
} // namespace pkpy