mirror of
https://github.com/pocketpy/pocketpy
synced 2025-10-20 11:30:18 +00:00
rename linalg
to vmath
This commit is contained in:
parent
cfa909f1b9
commit
94ce95c74d
@ -8,7 +8,7 @@ from typing import List, Dict
|
|||||||
assert os.system("python prebuild.py") == 0
|
assert os.system("python prebuild.py") == 0
|
||||||
|
|
||||||
ROOT = 'include/pocketpy'
|
ROOT = 'include/pocketpy'
|
||||||
PUBLIC_HEADERS = ['config.h', 'export.h', 'linalg.h', 'pocketpy.h']
|
PUBLIC_HEADERS = ['config.h', 'export.h', 'vmath.h', 'pocketpy.h']
|
||||||
|
|
||||||
COPYRIGHT = '''/*
|
COPYRIGHT = '''/*
|
||||||
* Copyright (c) 2025 blueloveTH
|
* Copyright (c) 2025 blueloveTH
|
||||||
|
@ -1,12 +1,10 @@
|
|||||||
---
|
---
|
||||||
icon: package
|
icon: package
|
||||||
label: linalg
|
label: vmath
|
||||||
---
|
---
|
||||||
|
|
||||||
Provide `mat3x3`, `vec2`, `vec3`, `vec2i` and `vec3i` types.
|
Provide vector math operations.
|
||||||
|
|
||||||
This classes adopt `torch`'s naming convention. Methods with `_` suffix will modify the instance itself.
|
|
||||||
|
|
||||||
#### Source code
|
#### Source code
|
||||||
|
|
||||||
:::code source="../../include/typings/linalg.pyi" :::
|
:::code source="../../include/typings/vmath.pyi" :::
|
@ -11,5 +11,6 @@ extern const char kPythonLibs_dataclasses[];
|
|||||||
extern const char kPythonLibs_datetime[];
|
extern const char kPythonLibs_datetime[];
|
||||||
extern const char kPythonLibs_functools[];
|
extern const char kPythonLibs_functools[];
|
||||||
extern const char kPythonLibs_heapq[];
|
extern const char kPythonLibs_heapq[];
|
||||||
|
extern const char kPythonLibs_linalg[];
|
||||||
extern const char kPythonLibs_operator[];
|
extern const char kPythonLibs_operator[];
|
||||||
extern const char kPythonLibs_typing[];
|
extern const char kPythonLibs_typing[];
|
||||||
|
@ -18,7 +18,7 @@ void pk__add_module_pickle();
|
|||||||
void pk__add_module_base64();
|
void pk__add_module_base64();
|
||||||
void pk__add_module_importlib();
|
void pk__add_module_importlib();
|
||||||
|
|
||||||
void pk__add_module_linalg();
|
void pk__add_module_vmath();
|
||||||
void pk__add_module_array2d();
|
void pk__add_module_array2d();
|
||||||
void pk__add_module_colorcvt();
|
void pk__add_module_colorcvt();
|
||||||
|
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
|
|
||||||
#include "pocketpy/config.h"
|
#include "pocketpy/config.h"
|
||||||
#include "pocketpy/export.h"
|
#include "pocketpy/export.h"
|
||||||
#include "pocketpy/linalg.h"
|
#include "pocketpy/vmath.h"
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
@ -667,7 +667,7 @@ PK_API bool
|
|||||||
/// noexcept
|
/// noexcept
|
||||||
PK_API int py_dict_len(py_Ref self);
|
PK_API int py_dict_len(py_Ref self);
|
||||||
|
|
||||||
/************* linalg module *************/
|
/************* vmath module *************/
|
||||||
void py_newvec2(py_OutRef out, c11_vec2);
|
void py_newvec2(py_OutRef out, c11_vec2);
|
||||||
void py_newvec3(py_OutRef out, c11_vec3);
|
void py_newvec3(py_OutRef out, c11_vec3);
|
||||||
void py_newvec2i(py_OutRef out, c11_vec2i);
|
void py_newvec2i(py_OutRef out, c11_vec2i);
|
||||||
@ -761,7 +761,7 @@ enum py_PredefinedType {
|
|||||||
tp_ImportError,
|
tp_ImportError,
|
||||||
tp_AssertionError,
|
tp_AssertionError,
|
||||||
tp_KeyError,
|
tp_KeyError,
|
||||||
/* linalg */
|
/* vmath */
|
||||||
tp_vec2,
|
tp_vec2,
|
||||||
tp_vec3,
|
tp_vec3,
|
||||||
tp_vec2i,
|
tp_vec2i,
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from typing import Callable, Literal, overload, Iterator, Self
|
from typing import Callable, Literal, overload, Iterator, Self
|
||||||
from linalg import vec2i
|
from vmath import vec2i
|
||||||
|
|
||||||
Neighborhood = Literal['Moore', 'von Neumann']
|
Neighborhood = Literal['Moore', 'von Neumann']
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from linalg import vec3
|
from vmath import vec3
|
||||||
|
|
||||||
def linear_srgb_to_srgb(rgb: vec3) -> vec3: ...
|
def linear_srgb_to_srgb(rgb: vec3) -> vec3: ...
|
||||||
def srgb_to_linear_srgb(rgb: vec3) -> vec3: ...
|
def srgb_to_linear_srgb(rgb: vec3) -> vec3: ...
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from typing import Self, Literal
|
from typing import Self, Literal
|
||||||
from linalg import vec2, vec2i
|
from vmath import vec2, vec2i
|
||||||
|
|
||||||
class TValue[T]:
|
class TValue[T]:
|
||||||
def __new__(cls, value: T) -> Self: ...
|
def __new__(cls, value: T) -> Self: ...
|
||||||
|
1
python/linalg.py
Normal file
1
python/linalg.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from vmath import *
|
@ -1,5 +1,5 @@
|
|||||||
from .function import gen_function
|
from .function import gen_function
|
||||||
from .converters import get_converter, set_linalg_converter, set_enum_converters
|
from .converters import get_converter, set_vmath_converter, set_enum_converters
|
||||||
from .writer import Writer
|
from .writer import Writer
|
||||||
from .struct import gen_struct
|
from .struct import gen_struct
|
||||||
from .enum import gen_enum
|
from .enum import gen_enum
|
||||||
|
@ -149,7 +149,7 @@ for t in LINALG_TYPES:
|
|||||||
_CONVERTERS['void'] = VoidConverter('void')
|
_CONVERTERS['void'] = VoidConverter('void')
|
||||||
_CONVERTERS['c11_array2d'] = StructConverter('c11_array2d', 'tp_array2d')
|
_CONVERTERS['c11_array2d'] = StructConverter('c11_array2d', 'tp_array2d')
|
||||||
|
|
||||||
def set_linalg_converter(T: str, py_T: str):
|
def set_vmath_converter(T: str, py_T: str):
|
||||||
assert py_T in LINALG_TYPES
|
assert py_T in LINALG_TYPES
|
||||||
_CONVERTERS[T] = BuiltinVectorConverter(T, py_T)
|
_CONVERTERS[T] = BuiltinVectorConverter(T, py_T)
|
||||||
|
|
||||||
|
@ -26,7 +26,7 @@ class Library:
|
|||||||
|
|
||||||
w, pyi_w = Writer(), Writer()
|
w, pyi_w = Writer(), Writer()
|
||||||
|
|
||||||
pyi_w.write('from linalg import vec2, vec3, vec2i, vec3i, mat3x3')
|
pyi_w.write('from vmath import vec2, vec3, vec2i, vec3i, mat3x3')
|
||||||
pyi_w.write('from typing import overload')
|
pyi_w.write('from typing import overload')
|
||||||
pyi_w.write('intptr = int')
|
pyi_w.write('intptr = int')
|
||||||
pyi_w.write('')
|
pyi_w.write('')
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
import pcpp
|
import pcpp
|
||||||
import pycparser
|
import pycparser
|
||||||
from c_bind import Library, set_linalg_converter, set_enum_converters
|
from c_bind import Library, set_vmath_converter, set_enum_converters
|
||||||
from c_bind.meta import Header
|
from c_bind.meta import Header
|
||||||
import os
|
import os
|
||||||
|
|
||||||
@ -18,8 +18,8 @@ header.remove_functions({'b2CreateTimer', 'b2Hash', 'b2DefaultDebugDraw'})
|
|||||||
|
|
||||||
lib = Library.from_header('box2d', header)
|
lib = Library.from_header('box2d', header)
|
||||||
|
|
||||||
set_linalg_converter('b2Vec2', 'vec2')
|
set_vmath_converter('b2Vec2', 'vec2')
|
||||||
set_linalg_converter('b2Vec3', 'vec3')
|
set_vmath_converter('b2Vec3', 'vec3')
|
||||||
|
|
||||||
set_enum_converters([enum.name for enum in lib.enums])
|
set_enum_converters([enum.name for enum in lib.enums])
|
||||||
|
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
import json
|
import json
|
||||||
from c_bind import Library, set_linalg_converter
|
from c_bind import Library, set_vmath_converter
|
||||||
|
|
||||||
with open('../3rd/raylib/parser/output/raylib_api.json') as f:
|
with open('../3rd/raylib/parser/output/raylib_api.json') as f:
|
||||||
data = json.load(f)
|
data = json.load(f)
|
||||||
|
|
||||||
lib = Library.from_raylib(data)
|
lib = Library.from_raylib(data)
|
||||||
set_linalg_converter('Vector2', 'vec2')
|
set_vmath_converter('Vector2', 'vec2')
|
||||||
set_linalg_converter('Vector3', 'vec3')
|
set_vmath_converter('Vector3', 'vec3')
|
||||||
|
|
||||||
lib.build(
|
lib.build(
|
||||||
includes=['raylib.h'],
|
includes=['raylib.h'],
|
||||||
|
@ -9,6 +9,7 @@ const char kPythonLibs_dataclasses[] = "def _get_annotations(cls: type):\n in
|
|||||||
const char kPythonLibs_datetime[] = "from time import localtime\nimport operator\n\nclass timedelta:\n def __init__(self, days=0, seconds=0):\n self.days = days\n self.seconds = seconds\n\n def __repr__(self):\n return f\"datetime.timedelta(days={self.days}, seconds={self.seconds})\"\n\n def __eq__(self, other) -> bool:\n if not isinstance(other, timedelta):\n return NotImplemented\n return (self.days, self.seconds) == (other.days, other.seconds)\n\n def __ne__(self, other) -> bool:\n if not isinstance(other, timedelta):\n return NotImplemented\n return (self.days, self.seconds) != (other.days, other.seconds)\n\n\nclass date:\n def __init__(self, year: int, month: int, day: int):\n self.year = year\n self.month = month\n self.day = day\n\n @staticmethod\n def today():\n t = localtime()\n return date(t.tm_year, t.tm_mon, t.tm_mday)\n \n def __cmp(self, other, op):\n if not isinstance(other, date):\n return NotImplemented\n if self.year != other.year:\n return op(self.year, other.year)\n if self.month != other.month:\n return op(self.month, other.month)\n return op(self.day, other.day)\n\n def __eq__(self, other) -> bool:\n return self.__cmp(other, operator.eq)\n \n def __ne__(self, other) -> bool:\n return self.__cmp(other, operator.ne)\n\n def __lt__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.lt)\n\n def __le__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.le)\n\n def __gt__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.gt)\n\n def __ge__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.ge)\n\n def __str__(self):\n return f\"{self.year}-{self.month:02}-{self.day:02}\"\n\n def __repr__(self):\n return f\"datetime.date({self.year}, {self.month}, {self.day})\"\n\n\nclass datetime(date):\n def __init__(self, year: int, month: int, day: int, hour: int, minute: int, second: int):\n super().__init__(year, month, day)\n # Validate and set hour, minute, and second\n if not 0 <= hour <= 23:\n raise ValueError(\"Hour must be between 0 and 23\")\n self.hour = hour\n if not 0 <= minute <= 59:\n raise ValueError(\"Minute must be between 0 and 59\")\n self.minute = minute\n if not 0 <= second <= 59:\n raise ValueError(\"Second must be between 0 and 59\")\n self.second = second\n\n def date(self) -> date:\n return date(self.year, self.month, self.day)\n\n @staticmethod\n def now():\n t = localtime()\n tm_sec = t.tm_sec\n if tm_sec == 60:\n tm_sec = 59\n return datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, tm_sec)\n\n def __str__(self):\n return f\"{self.year}-{self.month:02}-{self.day:02} {self.hour:02}:{self.minute:02}:{self.second:02}\"\n\n def __repr__(self):\n return f\"datetime.datetime({self.year}, {self.month}, {self.day}, {self.hour}, {self.minute}, {self.second})\"\n\n def __cmp(self, other, op):\n if not isinstance(other, datetime):\n return NotImplemented\n if self.year != other.year:\n return op(self.year, other.year)\n if self.month != other.month:\n return op(self.month, other.month)\n if self.day != other.day:\n return op(self.day, other.day)\n if self.hour != other.hour:\n return op(self.hour, other.hour)\n if self.minute != other.minute:\n return op(self.minute, other.minute)\n return op(self.second, other.second)\n\n def __eq__(self, other) -> bool:\n return self.__cmp(other, operator.eq)\n \n def __ne__(self, other) -> bool:\n return self.__cmp(other, operator.ne)\n \n def __lt__(self, other) -> bool:\n return self.__cmp(other, operator.lt)\n \n def __le__(self, other) -> bool:\n return self.__cmp(other, operator.le)\n \n def __gt__(self, other) -> bool:\n return self.__cmp(other, operator.gt)\n \n def __ge__(self, other) -> bool:\n return self.__cmp(other, operator.ge)\n\n\n";
|
const char kPythonLibs_datetime[] = "from time import localtime\nimport operator\n\nclass timedelta:\n def __init__(self, days=0, seconds=0):\n self.days = days\n self.seconds = seconds\n\n def __repr__(self):\n return f\"datetime.timedelta(days={self.days}, seconds={self.seconds})\"\n\n def __eq__(self, other) -> bool:\n if not isinstance(other, timedelta):\n return NotImplemented\n return (self.days, self.seconds) == (other.days, other.seconds)\n\n def __ne__(self, other) -> bool:\n if not isinstance(other, timedelta):\n return NotImplemented\n return (self.days, self.seconds) != (other.days, other.seconds)\n\n\nclass date:\n def __init__(self, year: int, month: int, day: int):\n self.year = year\n self.month = month\n self.day = day\n\n @staticmethod\n def today():\n t = localtime()\n return date(t.tm_year, t.tm_mon, t.tm_mday)\n \n def __cmp(self, other, op):\n if not isinstance(other, date):\n return NotImplemented\n if self.year != other.year:\n return op(self.year, other.year)\n if self.month != other.month:\n return op(self.month, other.month)\n return op(self.day, other.day)\n\n def __eq__(self, other) -> bool:\n return self.__cmp(other, operator.eq)\n \n def __ne__(self, other) -> bool:\n return self.__cmp(other, operator.ne)\n\n def __lt__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.lt)\n\n def __le__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.le)\n\n def __gt__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.gt)\n\n def __ge__(self, other: 'date') -> bool:\n return self.__cmp(other, operator.ge)\n\n def __str__(self):\n return f\"{self.year}-{self.month:02}-{self.day:02}\"\n\n def __repr__(self):\n return f\"datetime.date({self.year}, {self.month}, {self.day})\"\n\n\nclass datetime(date):\n def __init__(self, year: int, month: int, day: int, hour: int, minute: int, second: int):\n super().__init__(year, month, day)\n # Validate and set hour, minute, and second\n if not 0 <= hour <= 23:\n raise ValueError(\"Hour must be between 0 and 23\")\n self.hour = hour\n if not 0 <= minute <= 59:\n raise ValueError(\"Minute must be between 0 and 59\")\n self.minute = minute\n if not 0 <= second <= 59:\n raise ValueError(\"Second must be between 0 and 59\")\n self.second = second\n\n def date(self) -> date:\n return date(self.year, self.month, self.day)\n\n @staticmethod\n def now():\n t = localtime()\n tm_sec = t.tm_sec\n if tm_sec == 60:\n tm_sec = 59\n return datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, tm_sec)\n\n def __str__(self):\n return f\"{self.year}-{self.month:02}-{self.day:02} {self.hour:02}:{self.minute:02}:{self.second:02}\"\n\n def __repr__(self):\n return f\"datetime.datetime({self.year}, {self.month}, {self.day}, {self.hour}, {self.minute}, {self.second})\"\n\n def __cmp(self, other, op):\n if not isinstance(other, datetime):\n return NotImplemented\n if self.year != other.year:\n return op(self.year, other.year)\n if self.month != other.month:\n return op(self.month, other.month)\n if self.day != other.day:\n return op(self.day, other.day)\n if self.hour != other.hour:\n return op(self.hour, other.hour)\n if self.minute != other.minute:\n return op(self.minute, other.minute)\n return op(self.second, other.second)\n\n def __eq__(self, other) -> bool:\n return self.__cmp(other, operator.eq)\n \n def __ne__(self, other) -> bool:\n return self.__cmp(other, operator.ne)\n \n def __lt__(self, other) -> bool:\n return self.__cmp(other, operator.lt)\n \n def __le__(self, other) -> bool:\n return self.__cmp(other, operator.le)\n \n def __gt__(self, other) -> bool:\n return self.__cmp(other, operator.gt)\n \n def __ge__(self, other) -> bool:\n return self.__cmp(other, operator.ge)\n\n\n";
|
||||||
const char kPythonLibs_functools[] = "class cache:\n def __init__(self, f):\n self.f = f\n self.cache = {}\n\n def __call__(self, *args):\n if args not in self.cache:\n self.cache[args] = self.f(*args)\n return self.cache[args]\n \ndef reduce(function, sequence, initial=...):\n it = iter(sequence)\n if initial is ...:\n try:\n value = next(it)\n except StopIteration:\n raise TypeError(\"reduce() of empty sequence with no initial value\")\n else:\n value = initial\n for element in it:\n value = function(value, element)\n return value\n\nclass partial:\n def __init__(self, f, *args, **kwargs):\n self.f = f\n if not callable(f):\n raise TypeError(\"the first argument must be callable\")\n self.args = args\n self.kwargs = kwargs\n\n def __call__(self, *args, **kwargs):\n kwargs.update(self.kwargs)\n return self.f(*self.args, *args, **kwargs)\n\n";
|
const char kPythonLibs_functools[] = "class cache:\n def __init__(self, f):\n self.f = f\n self.cache = {}\n\n def __call__(self, *args):\n if args not in self.cache:\n self.cache[args] = self.f(*args)\n return self.cache[args]\n \ndef reduce(function, sequence, initial=...):\n it = iter(sequence)\n if initial is ...:\n try:\n value = next(it)\n except StopIteration:\n raise TypeError(\"reduce() of empty sequence with no initial value\")\n else:\n value = initial\n for element in it:\n value = function(value, element)\n return value\n\nclass partial:\n def __init__(self, f, *args, **kwargs):\n self.f = f\n if not callable(f):\n raise TypeError(\"the first argument must be callable\")\n self.args = args\n self.kwargs = kwargs\n\n def __call__(self, *args, **kwargs):\n kwargs.update(self.kwargs)\n return self.f(*self.args, *args, **kwargs)\n\n";
|
||||||
const char kPythonLibs_heapq[] = "# Heap queue algorithm (a.k.a. priority queue)\ndef heappush(heap, item):\n \"\"\"Push item onto heap, maintaining the heap invariant.\"\"\"\n heap.append(item)\n _siftdown(heap, 0, len(heap)-1)\n\ndef heappop(heap):\n \"\"\"Pop the smallest item off the heap, maintaining the heap invariant.\"\"\"\n lastelt = heap.pop() # raises appropriate IndexError if heap is empty\n if heap:\n returnitem = heap[0]\n heap[0] = lastelt\n _siftup(heap, 0)\n return returnitem\n return lastelt\n\ndef heapreplace(heap, item):\n \"\"\"Pop and return the current smallest value, and add the new item.\n\n This is more efficient than heappop() followed by heappush(), and can be\n more appropriate when using a fixed-size heap. Note that the value\n returned may be larger than item! That constrains reasonable uses of\n this routine unless written as part of a conditional replacement:\n\n if item > heap[0]:\n item = heapreplace(heap, item)\n \"\"\"\n returnitem = heap[0] # raises appropriate IndexError if heap is empty\n heap[0] = item\n _siftup(heap, 0)\n return returnitem\n\ndef heappushpop(heap, item):\n \"\"\"Fast version of a heappush followed by a heappop.\"\"\"\n if heap and heap[0] < item:\n item, heap[0] = heap[0], item\n _siftup(heap, 0)\n return item\n\ndef heapify(x):\n \"\"\"Transform list into a heap, in-place, in O(len(x)) time.\"\"\"\n n = len(x)\n # Transform bottom-up. The largest index there's any point to looking at\n # is the largest with a child index in-range, so must have 2*i + 1 < n,\n # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so\n # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is\n # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.\n for i in reversed(range(n//2)):\n _siftup(x, i)\n\n# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos\n# is the index of a leaf with a possibly out-of-order value. Restore the\n# heap invariant.\ndef _siftdown(heap, startpos, pos):\n newitem = heap[pos]\n # Follow the path to the root, moving parents down until finding a place\n # newitem fits.\n while pos > startpos:\n parentpos = (pos - 1) >> 1\n parent = heap[parentpos]\n if newitem < parent:\n heap[pos] = parent\n pos = parentpos\n continue\n break\n heap[pos] = newitem\n\ndef _siftup(heap, pos):\n endpos = len(heap)\n startpos = pos\n newitem = heap[pos]\n # Bubble up the smaller child until hitting a leaf.\n childpos = 2*pos + 1 # leftmost child position\n while childpos < endpos:\n # Set childpos to index of smaller child.\n rightpos = childpos + 1\n if rightpos < endpos and not heap[childpos] < heap[rightpos]:\n childpos = rightpos\n # Move the smaller child up.\n heap[pos] = heap[childpos]\n pos = childpos\n childpos = 2*pos + 1\n # The leaf at pos is empty now. Put newitem there, and bubble it up\n # to its final resting place (by sifting its parents down).\n heap[pos] = newitem\n _siftdown(heap, startpos, pos)";
|
const char kPythonLibs_heapq[] = "# Heap queue algorithm (a.k.a. priority queue)\ndef heappush(heap, item):\n \"\"\"Push item onto heap, maintaining the heap invariant.\"\"\"\n heap.append(item)\n _siftdown(heap, 0, len(heap)-1)\n\ndef heappop(heap):\n \"\"\"Pop the smallest item off the heap, maintaining the heap invariant.\"\"\"\n lastelt = heap.pop() # raises appropriate IndexError if heap is empty\n if heap:\n returnitem = heap[0]\n heap[0] = lastelt\n _siftup(heap, 0)\n return returnitem\n return lastelt\n\ndef heapreplace(heap, item):\n \"\"\"Pop and return the current smallest value, and add the new item.\n\n This is more efficient than heappop() followed by heappush(), and can be\n more appropriate when using a fixed-size heap. Note that the value\n returned may be larger than item! That constrains reasonable uses of\n this routine unless written as part of a conditional replacement:\n\n if item > heap[0]:\n item = heapreplace(heap, item)\n \"\"\"\n returnitem = heap[0] # raises appropriate IndexError if heap is empty\n heap[0] = item\n _siftup(heap, 0)\n return returnitem\n\ndef heappushpop(heap, item):\n \"\"\"Fast version of a heappush followed by a heappop.\"\"\"\n if heap and heap[0] < item:\n item, heap[0] = heap[0], item\n _siftup(heap, 0)\n return item\n\ndef heapify(x):\n \"\"\"Transform list into a heap, in-place, in O(len(x)) time.\"\"\"\n n = len(x)\n # Transform bottom-up. The largest index there's any point to looking at\n # is the largest with a child index in-range, so must have 2*i + 1 < n,\n # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so\n # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is\n # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.\n for i in reversed(range(n//2)):\n _siftup(x, i)\n\n# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos\n# is the index of a leaf with a possibly out-of-order value. Restore the\n# heap invariant.\ndef _siftdown(heap, startpos, pos):\n newitem = heap[pos]\n # Follow the path to the root, moving parents down until finding a place\n # newitem fits.\n while pos > startpos:\n parentpos = (pos - 1) >> 1\n parent = heap[parentpos]\n if newitem < parent:\n heap[pos] = parent\n pos = parentpos\n continue\n break\n heap[pos] = newitem\n\ndef _siftup(heap, pos):\n endpos = len(heap)\n startpos = pos\n newitem = heap[pos]\n # Bubble up the smaller child until hitting a leaf.\n childpos = 2*pos + 1 # leftmost child position\n while childpos < endpos:\n # Set childpos to index of smaller child.\n rightpos = childpos + 1\n if rightpos < endpos and not heap[childpos] < heap[rightpos]:\n childpos = rightpos\n # Move the smaller child up.\n heap[pos] = heap[childpos]\n pos = childpos\n childpos = 2*pos + 1\n # The leaf at pos is empty now. Put newitem there, and bubble it up\n # to its final resting place (by sifting its parents down).\n heap[pos] = newitem\n _siftdown(heap, startpos, pos)";
|
||||||
|
const char kPythonLibs_linalg[] = "from vmath import *";
|
||||||
const char kPythonLibs_operator[] = "# https://docs.python.org/3/library/operator.html#mapping-operators-to-functions\n\ndef le(a, b): return a <= b\ndef lt(a, b): return a < b\ndef ge(a, b): return a >= b\ndef gt(a, b): return a > b\ndef eq(a, b): return a == b\ndef ne(a, b): return a != b\n\ndef and_(a, b): return a & b\ndef or_(a, b): return a | b\ndef xor(a, b): return a ^ b\ndef invert(a): return ~a\ndef lshift(a, b): return a << b\ndef rshift(a, b): return a >> b\n\ndef is_(a, b): return a is b\ndef is_not(a, b): return a is not b\ndef not_(a): return not a\ndef truth(a): return bool(a)\ndef contains(a, b): return b in a\n\ndef add(a, b): return a + b\ndef sub(a, b): return a - b\ndef mul(a, b): return a * b\ndef truediv(a, b): return a / b\ndef floordiv(a, b): return a // b\ndef mod(a, b): return a % b\ndef pow(a, b): return a ** b\ndef neg(a): return -a\ndef matmul(a, b): return a @ b\n\ndef getitem(a, b): return a[b]\ndef setitem(a, b, c): a[b] = c\ndef delitem(a, b): del a[b]\n\ndef iadd(a, b): a += b; return a\ndef isub(a, b): a -= b; return a\ndef imul(a, b): a *= b; return a\ndef itruediv(a, b): a /= b; return a\ndef ifloordiv(a, b): a //= b; return a\ndef imod(a, b): a %= b; return a\n# def ipow(a, b): a **= b; return a\n# def imatmul(a, b): a @= b; return a\ndef iand(a, b): a &= b; return a\ndef ior(a, b): a |= b; return a\ndef ixor(a, b): a ^= b; return a\ndef ilshift(a, b): a <<= b; return a\ndef irshift(a, b): a >>= b; return a\n";
|
const char kPythonLibs_operator[] = "# https://docs.python.org/3/library/operator.html#mapping-operators-to-functions\n\ndef le(a, b): return a <= b\ndef lt(a, b): return a < b\ndef ge(a, b): return a >= b\ndef gt(a, b): return a > b\ndef eq(a, b): return a == b\ndef ne(a, b): return a != b\n\ndef and_(a, b): return a & b\ndef or_(a, b): return a | b\ndef xor(a, b): return a ^ b\ndef invert(a): return ~a\ndef lshift(a, b): return a << b\ndef rshift(a, b): return a >> b\n\ndef is_(a, b): return a is b\ndef is_not(a, b): return a is not b\ndef not_(a): return not a\ndef truth(a): return bool(a)\ndef contains(a, b): return b in a\n\ndef add(a, b): return a + b\ndef sub(a, b): return a - b\ndef mul(a, b): return a * b\ndef truediv(a, b): return a / b\ndef floordiv(a, b): return a // b\ndef mod(a, b): return a % b\ndef pow(a, b): return a ** b\ndef neg(a): return -a\ndef matmul(a, b): return a @ b\n\ndef getitem(a, b): return a[b]\ndef setitem(a, b, c): a[b] = c\ndef delitem(a, b): del a[b]\n\ndef iadd(a, b): a += b; return a\ndef isub(a, b): a -= b; return a\ndef imul(a, b): a *= b; return a\ndef itruediv(a, b): a /= b; return a\ndef ifloordiv(a, b): a //= b; return a\ndef imod(a, b): a %= b; return a\n# def ipow(a, b): a **= b; return a\n# def imatmul(a, b): a @= b; return a\ndef iand(a, b): a &= b; return a\ndef ior(a, b): a |= b; return a\ndef ixor(a, b): a ^= b; return a\ndef ilshift(a, b): a <<= b; return a\ndef irshift(a, b): a >>= b; return a\n";
|
||||||
const char kPythonLibs_typing[] = "class _Placeholder:\n def __init__(self, *args, **kwargs):\n pass\n def __getitem__(self, *args):\n return self\n def __call__(self, *args, **kwargs):\n return self\n def __and__(self, other):\n return self\n def __or__(self, other):\n return self\n def __xor__(self, other):\n return self\n\n\n_PLACEHOLDER = _Placeholder()\n\nList = _PLACEHOLDER\nDict = _PLACEHOLDER\nTuple = _PLACEHOLDER\nSet = _PLACEHOLDER\nAny = _PLACEHOLDER\nUnion = _PLACEHOLDER\nOptional = _PLACEHOLDER\nCallable = _PLACEHOLDER\nType = _PLACEHOLDER\nTypeAlias = _PLACEHOLDER\nNewType = _PLACEHOLDER\n\nLiteral = _PLACEHOLDER\nLiteralString = _PLACEHOLDER\n\nIterable = _PLACEHOLDER\nGenerator = _PLACEHOLDER\nIterator = _PLACEHOLDER\n\nHashable = _PLACEHOLDER\n\nTypeVar = _PLACEHOLDER\nSelf = _PLACEHOLDER\n\nProtocol = object\nGeneric = object\nNever = object\n\nTYPE_CHECKING = False\n\n# decorators\noverload = lambda x: x\nfinal = lambda x: x\n\n# exhaustiveness checking\nassert_never = lambda x: x\n";
|
const char kPythonLibs_typing[] = "class _Placeholder:\n def __init__(self, *args, **kwargs):\n pass\n def __getitem__(self, *args):\n return self\n def __call__(self, *args, **kwargs):\n return self\n def __and__(self, other):\n return self\n def __or__(self, other):\n return self\n def __xor__(self, other):\n return self\n\n\n_PLACEHOLDER = _Placeholder()\n\nList = _PLACEHOLDER\nDict = _PLACEHOLDER\nTuple = _PLACEHOLDER\nSet = _PLACEHOLDER\nAny = _PLACEHOLDER\nUnion = _PLACEHOLDER\nOptional = _PLACEHOLDER\nCallable = _PLACEHOLDER\nType = _PLACEHOLDER\nTypeAlias = _PLACEHOLDER\nNewType = _PLACEHOLDER\n\nLiteral = _PLACEHOLDER\nLiteralString = _PLACEHOLDER\n\nIterable = _PLACEHOLDER\nGenerator = _PLACEHOLDER\nIterator = _PLACEHOLDER\n\nHashable = _PLACEHOLDER\n\nTypeVar = _PLACEHOLDER\nSelf = _PLACEHOLDER\n\nProtocol = object\nGeneric = object\nNever = object\n\nTYPE_CHECKING = False\n\n# decorators\noverload = lambda x: x\nfinal = lambda x: x\n\n# exhaustiveness checking\nassert_never = lambda x: x\n";
|
||||||
|
|
||||||
@ -22,6 +23,7 @@ const char* load_kPythonLib(const char* name) {
|
|||||||
if (strcmp(name, "datetime") == 0) return kPythonLibs_datetime;
|
if (strcmp(name, "datetime") == 0) return kPythonLibs_datetime;
|
||||||
if (strcmp(name, "functools") == 0) return kPythonLibs_functools;
|
if (strcmp(name, "functools") == 0) return kPythonLibs_functools;
|
||||||
if (strcmp(name, "heapq") == 0) return kPythonLibs_heapq;
|
if (strcmp(name, "heapq") == 0) return kPythonLibs_heapq;
|
||||||
|
if (strcmp(name, "linalg") == 0) return kPythonLibs_linalg;
|
||||||
if (strcmp(name, "operator") == 0) return kPythonLibs_operator;
|
if (strcmp(name, "operator") == 0) return kPythonLibs_operator;
|
||||||
if (strcmp(name, "typing") == 0) return kPythonLibs_typing;
|
if (strcmp(name, "typing") == 0) return kPythonLibs_typing;
|
||||||
return NULL;
|
return NULL;
|
||||||
|
@ -213,7 +213,7 @@ void VM__ctor(VM* self) {
|
|||||||
|
|
||||||
py_newnotimplemented(py_emplacedict(&self->builtins, py_name("NotImplemented")));
|
py_newnotimplemented(py_emplacedict(&self->builtins, py_name("NotImplemented")));
|
||||||
|
|
||||||
pk__add_module_linalg();
|
pk__add_module_vmath();
|
||||||
pk__add_module_array2d();
|
pk__add_module_array2d();
|
||||||
pk__add_module_colorcvt();
|
pk__add_module_colorcvt();
|
||||||
|
|
||||||
|
@ -774,7 +774,7 @@ static void register_array2d_like(py_Ref mod) {
|
|||||||
py_bindmethod(type, "convolve", array2d_like_convolve);
|
py_bindmethod(type, "convolve", array2d_like_convolve);
|
||||||
|
|
||||||
const char* scc =
|
const char* scc =
|
||||||
"\ndef get_connected_components(self, value: T, neighborhood: Neighborhood) -> tuple[array2d[int], int]:\n from collections import deque\n from linalg import vec2i\n\n DIRS = [vec2i.LEFT, vec2i.RIGHT, vec2i.UP, vec2i.DOWN]\n assert neighborhood in ['Moore', 'von Neumann']\n\n if neighborhood == 'Moore':\n DIRS.extend([\n vec2i.LEFT+vec2i.UP,\n vec2i.RIGHT+vec2i.UP,\n vec2i.LEFT+vec2i.DOWN,\n vec2i.RIGHT+vec2i.DOWN\n ])\n\n visited = array2d[int](self.width, self.height, default=0)\n queue = deque()\n count = 0\n for y in range(self.height):\n for x in range(self.width):\n if visited[x, y] or self[x, y] != value:\n continue\n count += 1\n queue.append((x, y))\n visited[x, y] = count\n while queue:\n cx, cy = queue.popleft()\n for dx, dy in DIRS:\n nx, ny = cx+dx, cy+dy\n if self.is_valid(nx, ny) and not visited[nx, ny] and self[nx, ny] == value:\n queue.append((nx, ny))\n visited[nx, ny] = count\n return visited, count\n\narray2d_like.get_connected_components = get_connected_components\ndel get_connected_components\n";
|
"\ndef get_connected_components(self, value: T, neighborhood: Neighborhood) -> tuple[array2d[int], int]:\n from collections import deque\n from vmath import vec2i\n\n DIRS = [vec2i.LEFT, vec2i.RIGHT, vec2i.UP, vec2i.DOWN]\n assert neighborhood in ['Moore', 'von Neumann']\n\n if neighborhood == 'Moore':\n DIRS.extend([\n vec2i.LEFT+vec2i.UP,\n vec2i.RIGHT+vec2i.UP,\n vec2i.LEFT+vec2i.DOWN,\n vec2i.RIGHT+vec2i.DOWN\n ])\n\n visited = array2d[int](self.width, self.height, default=0)\n queue = deque()\n count = 0\n for y in range(self.height):\n for x in range(self.width):\n if visited[x, y] or self[x, y] != value:\n continue\n count += 1\n queue.append((x, y))\n visited[x, y] = count\n while queue:\n cx, cy = queue.popleft()\n for dx, dy in DIRS:\n nx, ny = cx+dx, cy+dy\n if self.is_valid(nx, ny) and not visited[nx, ny] and self[nx, ny] == value:\n queue.append((nx, ny))\n visited[nx, ny] = count\n return visited, count\n\narray2d_like.get_connected_components = get_connected_components\ndel get_connected_components\n";
|
||||||
if(!py_exec(scc, "array2d.py", EXEC_MODE, mod)) {
|
if(!py_exec(scc, "array2d.py", EXEC_MODE, mod)) {
|
||||||
py_printexc();
|
py_printexc();
|
||||||
c11__abort("failed to execute array2d.py");
|
c11__abort("failed to execute array2d.py");
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
#include "pocketpy/linalg.h"
|
#include "pocketpy/vmath.h"
|
||||||
#include "pocketpy/pocketpy.h"
|
#include "pocketpy/pocketpy.h"
|
||||||
|
|
||||||
#include "pocketpy/common/sstream.h"
|
#include "pocketpy/common/sstream.h"
|
||||||
@ -1034,7 +1034,7 @@ static bool color32_ansi_bg(int argc, py_Ref argv) {
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool linalg_rgb(int argc, py_Ref argv) {
|
static bool vmath_rgb(int argc, py_Ref argv) {
|
||||||
PY_CHECK_ARGC(3);
|
PY_CHECK_ARGC(3);
|
||||||
PY_CHECK_ARG_TYPE(0, tp_int);
|
PY_CHECK_ARG_TYPE(0, tp_int);
|
||||||
PY_CHECK_ARG_TYPE(1, tp_int);
|
PY_CHECK_ARG_TYPE(1, tp_int);
|
||||||
@ -1048,7 +1048,7 @@ static bool linalg_rgb(int argc, py_Ref argv) {
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool linalg_rgba(int argc, py_Ref argv) {
|
static bool vmath_rgba(int argc, py_Ref argv) {
|
||||||
PY_CHECK_ARGC(4);
|
PY_CHECK_ARGC(4);
|
||||||
PY_CHECK_ARG_TYPE(0, tp_int);
|
PY_CHECK_ARG_TYPE(0, tp_int);
|
||||||
PY_CHECK_ARG_TYPE(1, tp_int);
|
PY_CHECK_ARG_TYPE(1, tp_int);
|
||||||
@ -1077,8 +1077,8 @@ static bool color32_alpha_blend_STATIC(int argc, py_Ref argv) {
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void pk__add_module_linalg() {
|
void pk__add_module_vmath() {
|
||||||
py_Ref mod = py_newmodule("linalg");
|
py_Ref mod = py_newmodule("vmath");
|
||||||
|
|
||||||
py_Type vec2 = pk_newtype("vec2", tp_object, mod, NULL, false, true);
|
py_Type vec2 = pk_newtype("vec2", tp_object, mod, NULL, false, true);
|
||||||
py_Type vec3 = pk_newtype("vec3", tp_object, mod, NULL, false, true);
|
py_Type vec3 = pk_newtype("vec3", tp_object, mod, NULL, false, true);
|
||||||
@ -1263,8 +1263,8 @@ void pk__add_module_linalg() {
|
|||||||
py_bindmethod(color32, "to_vec3i", color32_to_vec3i);
|
py_bindmethod(color32, "to_vec3i", color32_to_vec3i);
|
||||||
py_bindmethod(color32, "ansi_fg", color32_ansi_fg);
|
py_bindmethod(color32, "ansi_fg", color32_ansi_fg);
|
||||||
py_bindmethod(color32, "ansi_bg", color32_ansi_bg);
|
py_bindmethod(color32, "ansi_bg", color32_ansi_bg);
|
||||||
py_bindfunc(mod, "rgb", linalg_rgb);
|
py_bindfunc(mod, "rgb", vmath_rgb);
|
||||||
py_bindfunc(mod, "rgba", linalg_rgba);
|
py_bindfunc(mod, "rgba", vmath_rgba);
|
||||||
py_bindstaticmethod(color32, "alpha_blend", color32_alpha_blend_STATIC);
|
py_bindstaticmethod(color32, "alpha_blend", color32_alpha_blend_STATIC);
|
||||||
}
|
}
|
||||||
|
|
@ -87,4 +87,7 @@ class A:
|
|||||||
self.b = b
|
self.b = b
|
||||||
|
|
||||||
a = A(1, ['2', False, None])
|
a = A(1, ['2', False, None])
|
||||||
assert json.dumps(a.__dict__) == '{"a": 1, "b": ["2", false, null]}'
|
assert json.dumps(a.__dict__) in [
|
||||||
|
'{"a": 1, "b": ["2", false, null]}',
|
||||||
|
'{"b": ["2", false, null], "a": 1}',
|
||||||
|
]
|
@ -1,4 +1,4 @@
|
|||||||
from linalg import color32, rgb, rgba
|
from vmath import color32, rgb, rgba
|
||||||
|
|
||||||
a = color32(100, 200, 255, 120)
|
a = color32(100, 200, 255, 120)
|
||||||
assert a.r == 100
|
assert a.r == 100
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from linalg import mat3x3, vec2, vec3, vec2i, vec3i
|
from vmath import mat3x3, vec2, vec3, vec2i, vec3i
|
||||||
import random
|
import random
|
||||||
import math
|
import math
|
||||||
|
|
@ -1,5 +1,5 @@
|
|||||||
from array2d import array2d
|
from array2d import array2d
|
||||||
from linalg import vec2i
|
from vmath import vec2i
|
||||||
|
|
||||||
def exit_on_error():
|
def exit_on_error():
|
||||||
raise KeyboardInterrupt
|
raise KeyboardInterrupt
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
import array2d
|
import array2d
|
||||||
from linalg import vec2i
|
from vmath import vec2i
|
||||||
|
|
||||||
|
|
||||||
def on_builder(a:vec2i):
|
def on_builder(a:vec2i):
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
import colorcvt
|
import colorcvt
|
||||||
from linalg import vec3
|
from vmath import vec3
|
||||||
|
|
||||||
def oklch(expr: str) -> vec3:
|
def oklch(expr: str) -> vec3:
|
||||||
# oklch(82.33% 0.37 153)
|
# oklch(82.33% 0.37 153)
|
||||||
|
@ -22,7 +22,7 @@ test(False) # PKL_FALSE
|
|||||||
test("hello") # PKL_STRING
|
test("hello") # PKL_STRING
|
||||||
test(b"hello") # PKL_BYTES
|
test(b"hello") # PKL_BYTES
|
||||||
|
|
||||||
from linalg import vec2, vec3, vec2i, vec3i
|
from vmath import vec2, vec3, vec2i, vec3i
|
||||||
|
|
||||||
test(vec2(2/3, 1.0)) # PKL_VEC2
|
test(vec2(2/3, 1.0)) # PKL_VEC2
|
||||||
test(vec3(2/3, 1.0, 3.0)) # PKL_VEC3
|
test(vec3(2/3, 1.0, 3.0)) # PKL_VEC3
|
||||||
@ -186,7 +186,7 @@ class Foo:
|
|||||||
test(Foo(1, 2))
|
test(Foo(1, 2))
|
||||||
test(Foo([1, True], 'c'))
|
test(Foo([1, True], 'c'))
|
||||||
|
|
||||||
from linalg import vec2
|
from vmath import vec2
|
||||||
|
|
||||||
test(vec2(1, 2))
|
test(vec2(1, 2))
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user