Compare commits

..

1 Commits

6 changed files with 53 additions and 336 deletions

@ -1 +1 @@
Subproject commit cc7cdccae657b0f81a1e234eb9d4ed4c458bda0f
Subproject commit 2d9e04701ddac77eb33eb7f9dcb24cab5bb10412

View File

@ -1,76 +0,0 @@
---
icon: rocket
order: 10
label: "Application Guide"
---
Welcome to the Google Summer of Code 2026 application guide for pocketpy.
We are recruiting a student who is passionate about vibe coding and mobile game development.
See [Project Ideas (TBA)](./ideas.md) for more details about the project.
## Prerequisites
To apply for this project, you need to satisfy the following prerequisites:
+ You are a student enrolled in an accredited institution (university, college, etc.) pursuing a degree in computer science or a related field. And this is your first time participating in Google Summer of Code.
+ You have interest in vibe coding and mobile game development.
+ You are experienced in [Python](https://www.python.org/) and backend technologies, such as [FastAPI](https://fastapi.tiangolo.com/) or [Flask](https://flask.palletsprojects.com/).
+ You are glad to learn mobile app development using frameworks like [Flutter](https://flutter.dev/).
## Application steps
### Step 1
If you think you meet the prerequisites,
send an email to `blueloveth@foxmail.com` with the following information.
1. A brief introduction about yourself, including the most related open sourced project you have worked on before. It is highly recommended to attach your Github profile link.
2. Your understanding of this project and why you are capable of completing it.
3. Your free time during the whole GSoC period (From 2026-03-01 to 2026-08-31).
### Step 2
After you get a positive reply from us,
you need to complete 1~2 pull requests to pocketpy's repository on GitHub.
This is mandatory as it demonstrates your coding skills and commitment to the project.
We will provide you a few good first issues to work on.
### Step 3
Once your pull requests are merged,
we will guide you to write a full proposal
for the project you are going to work on during GSoC 2026.
This proposal will be submitted to Google for review.
## Build guide for pocketpy
First, you need to install these tools:
1. Python(>= 3.8), I am sure you already have it.
2. A C11 compiler, such as GCC, Clang or MSVC. If you are on Linux, `gcc` is already installed. If you are on Windows, you can install Visual Studio with C/C++ development tools.
3. CMake(>= 3.10), a cross-platform build tool. You can use `pip install cmake` to install it.
Then, clone pocketpy sources from github and try to build:
```bash
git clone https://github.com/pocketpy/pocketpy
cd pocketpy
python cmake_build.py
```
If everything goes well, you will get a `main` executable (`main.exe` on Windows) in the root directory of pocketpy.
Simply run it and you will enter pocketpy's REPL.
```txt
pocketpy 2.1.7 (Jan 7 2026, 16:42:45) [64 bit] on darwin
https://github.com/pocketpy/pocketpy
Type "exit()" to exit.
>>>
>>> "Hello, world"
'Hello, world'
```
## Coding style guide
See [Coding Style Guide](../coding-style-guide.md).

View File

@ -1,2 +0,0 @@
order: 1
label: "GSoC 2026"

View File

@ -18,15 +18,6 @@
return true; \
}
#define ONE_ARG_BOOL_FUNC(name, func) \
static bool math_##name(int argc, py_Ref argv) { \
PY_CHECK_ARGC(1); \
double x; \
if(!py_castfloat(py_arg(0), &x)) return false; \
py_newbool(py_retval(), func(x)); \
return true; \
}
#define TWO_ARG_FUNC(name, func) \
static bool math_##name(int argc, py_Ref argv) { \
PY_CHECK_ARGC(2); \
@ -78,9 +69,9 @@ static bool math_gcd(int argc, py_Ref argv) {
return true;
}
ONE_ARG_BOOL_FUNC(isfinite, isfinite)
ONE_ARG_BOOL_FUNC(isinf, isinf)
ONE_ARG_BOOL_FUNC(isnan, isnan)
ONE_ARG_FUNC(isfinite, isfinite)
ONE_ARG_FUNC(isinf, isinf)
ONE_ARG_FUNC(isnan, isnan)
static bool math_isclose(int argc, py_Ref argv) {
PY_CHECK_ARGC(2);
@ -215,5 +206,4 @@ void pk__add_module_math() {
}
#undef ONE_ARG_FUNC
#undef ONE_ARG_BOOL_FUNC
#undef TWO_ARG_FUNC
#undef TWO_ARG_FUNC

View File

@ -1,259 +1,64 @@
import math
# ============================================================
# Helper function for floating point comparison
# ============================================================
from math import log, log10, log2, sin, cos, tan, e, pi, isnan, isinf, fabs, floor, ceil, sqrt
def isclose(a, b):
return abs(a-b) < 0.000001
# ============================================================
# Constants: pi, e, inf, nan
# ============================================================
assert isclose(e, 2.718281828459045), e
assert isclose(pi, 3.141592653589793), pi
assert isclose(log(10), 2.302585092994046), log(10)
assert isclose(log10(10), 1.0), log10(10)
assert isclose(log2(10), 3.321928094887362), log2(10)
assert isclose(sin(0), 0.0), sin(0)
assert isclose(cos(0), 1.0), cos(0)
assert isclose(tan(0), 0.0), tan(0)
assert isclose(math.pi, 3.141592653589793)
assert isclose(math.e, 2.718281828459045)
assert math.isinf(math.inf)
assert math.isnan(math.nan)
a = -0.1
a = a**a
assert isnan(a)
assert not isinf(a)
assert isinf(float("inf"))
# ============================================================
# Rounding functions: ceil, floor, trunc, fabs
# ============================================================
assert isclose(fabs(-1.2), 1.2)
# ceil - round up to nearest integer
assert math.ceil(1.2) == 2
assert math.ceil(-1.2) == -1
assert math.ceil(2.0) == 2
assert math.ceil(0) == 0
assert floor(1.2) == 1
assert floor(-1.2) == -2
assert ceil(1.2) == 2
assert ceil(-1.2) == -1
# floor - round down to nearest integer
assert math.floor(1.2) == 1
assert math.floor(-1.2) == -2
assert math.floor(2.0) == 2
assert math.floor(0) == 0
assert isclose(sqrt(4), 2.0)
# trunc - truncate towards zero
assert math.trunc(1.7) == 1
assert math.trunc(-1.7) == -1
assert math.trunc(2.0) == 2
assert math.trunc(0) == 0
import math
# fabs - absolute value (returns float)
assert isclose(math.fabs(-1.2), 1.2)
assert isclose(math.fabs(1.2), 1.2)
assert isclose(math.fabs(0), 0.0)
assert isclose(math.fabs(-0.0), 0.0)
# ============================================================
# Classification functions: isnan, isinf, isfinite, isclose
# ============================================================
# isnan - check if value is NaN
assert math.isnan(float('nan'))
assert math.isnan(math.nan)
assert not math.isnan(1.0)
assert not math.isnan(math.inf)
# isinf - check if value is infinity
assert math.isinf(float('inf'))
assert math.isinf(float('-inf'))
assert math.isinf(math.inf)
assert not math.isinf(1.0)
assert not math.isinf(math.nan)
# isfinite - check if value is finite (not inf or nan)
assert math.isfinite(1.0)
assert math.isfinite(0.0)
assert math.isfinite(-1.0)
assert not math.isfinite(math.inf)
assert not math.isfinite(-math.inf)
assert not math.isfinite(math.nan)
# isclose - check if two values are close
assert math.isclose(1.0, 1.0)
assert math.isclose(1.0, 1.0 + 1e-10)
assert not math.isclose(1.0, 1.1)
# ============================================================
# Power and logarithmic functions: exp, log, log2, log10, pow, sqrt
# ============================================================
# exp - e raised to the power x
assert isclose(math.exp(0), 1.0)
assert isclose(math.exp(1), math.e)
assert isclose(math.exp(2), math.e * math.e)
# log - natural logarithm (base e) or logarithm with custom base
assert isclose(math.log(1), 0.0)
assert isclose(math.log(math.e), 1.0)
assert isclose(math.log(10), 2.302585092994046)
assert isclose(math.log(100, 10), 2.0) # log base 10
assert isclose(math.log(8, 2), 3.0) # log base 2
# log2 - logarithm base 2
assert isclose(math.log2(1), 0.0)
assert isclose(math.log2(2), 1.0)
assert isclose(math.log2(8), 3.0)
assert isclose(math.log2(10), 3.321928094887362)
# log10 - logarithm base 10
assert isclose(math.log10(1), 0.0)
assert isclose(math.log10(10), 1.0)
assert isclose(math.log10(100), 2.0)
assert isclose(math.log10(1000), 3.0)
# pow - x raised to the power y
assert isclose(math.pow(2, 3), 8.0)
assert isclose(math.pow(2, 0), 1.0)
assert isclose(math.pow(2, -1), 0.5)
assert isclose(math.pow(4, 0.5), 2.0)
assert isclose(math.pow(0, 0), 1.0)
# sqrt - square root
assert isclose(math.sqrt(4), 2.0)
assert isclose(math.sqrt(2), 1.4142135623730951)
assert isclose(math.sqrt(0), 0.0)
assert isclose(math.sqrt(1), 1.0)
# ============================================================
# Trigonometric functions: sin, cos, tan, asin, acos, atan, atan2
# ============================================================
# sin - sine
assert isclose(math.sin(0), 0.0)
assert isclose(math.sin(math.pi / 2), 1.0)
assert isclose(math.sin(math.pi), 0.0)
assert isclose(math.sin(-math.pi / 2), -1.0)
# cos - cosine
assert isclose(math.cos(0), 1.0)
assert isclose(math.cos(math.pi / 2), 0.0)
assert isclose(math.cos(math.pi), -1.0)
assert isclose(math.cos(-math.pi), -1.0)
# tan - tangent
assert isclose(math.tan(0), 0.0)
assert isclose(math.tan(math.pi / 4), 1.0)
assert isclose(math.tan(-math.pi / 4), -1.0)
# asin - arc sine (inverse sine)
assert isclose(math.asin(0), 0.0)
assert isclose(math.asin(1), math.pi / 2)
assert isclose(math.asin(-1), -math.pi / 2)
assert isclose(math.asin(0.5), math.pi / 6)
# acos - arc cosine (inverse cosine)
assert isclose(math.acos(1), 0.0)
assert isclose(math.acos(0), math.pi / 2)
assert isclose(math.acos(-1), math.pi)
assert isclose(math.acos(0.5), math.pi / 3)
# atan - arc tangent (inverse tangent)
assert isclose(math.atan(0), 0.0)
assert isclose(math.atan(1), math.pi / 4)
assert isclose(math.atan(-1), -math.pi / 4)
# atan2 - arc tangent of y/x (handles quadrants correctly)
assert isclose(math.atan2(0, 1), 0.0)
assert isclose(math.atan2(1, 0), math.pi / 2)
assert isclose(math.atan2(0, -1), math.pi)
assert isclose(math.atan2(-1, 0), -math.pi / 2)
assert isclose(math.atan2(1, 1), math.pi / 4)
assert isclose(math.atan2(-1, -1), -3 * math.pi / 4)
# ============================================================
# Angle conversion functions: degrees, radians
# ============================================================
# degrees - convert radians to degrees
assert isclose(math.degrees(0), 0.0)
assert isclose(math.degrees(math.pi), 180.0)
assert isclose(math.degrees(math.pi / 2), 90.0)
assert isclose(math.degrees(2 * math.pi), 360.0)
# radians - convert degrees to radians
assert isclose(math.radians(0), 0.0)
assert isclose(math.radians(180), math.pi)
assert isclose(math.radians(90), math.pi / 2)
assert isclose(math.radians(360), 2 * math.pi)
# ============================================================
# Arithmetic functions: fmod, modf, copysign, fsum, gcd, factorial
# ============================================================
# fmod - floating point modulo
assert isclose(math.fmod(5.0, 3.0), 2.0)
assert isclose(math.fmod(-5.0, 3.0), -2.0)
assert isclose(math.fmod(5.0, -3.0), 2.0)
assert isclose(math.fmod(-5.0, -3.0), -2.0)
assert isclose(math.fmod(4.0, 3.0), 1.0)
assert isclose(math.fmod(-4.0, 3.0), -1.0)
assert isclose(math.fmod(-2.0, 3.0), -2.0)
assert isclose(math.fmod(2.0, 3.0), 2.0)
# modf - split into fractional and integer parts
frac, integer = math.modf(1.5)
assert isclose(frac, 0.5)
assert isclose(integer, 1.0)
frac, integer = math.modf(-1.5)
assert isclose(frac, -0.5)
assert isclose(integer, -1.0)
frac, integer = math.modf(2.0)
assert isclose(frac, 0.0)
assert isclose(integer, 2.0)
frac, integer = math.modf(0.0)
assert isclose(frac, 0.0)
assert isclose(integer, 0.0)
# copysign - return x with the sign of y
assert isclose(math.copysign(1.0, -1.0), -1.0)
assert isclose(math.copysign(-1.0, 1.0), 1.0)
assert isclose(math.copysign(1.0, 1.0), 1.0)
assert isclose(math.copysign(-1.0, -1.0), -1.0)
assert isclose(math.copysign(5.0, -0.0), -5.0)
assert isclose(math.copysign(0.0, -1.0), 0.0) # sign of zero may vary
# fsum - accurate floating point sum
# test fsum
assert math.fsum([0.1] * 10) == 1.0
assert math.fsum([]) == 0.0
assert math.fsum([1.0, 2.0, 3.0]) == 6.0
assert math.fsum([0.1, 0.2, 0.3]) == 0.6
# gcd - greatest common divisor
# test gcd
assert math.gcd(10, 5) == 5
assert math.gcd(10, 6) == 2
assert math.gcd(10, 7) == 1
assert math.gcd(10, 10) == 10
assert math.gcd(-10, 10) == 10
assert math.gcd(10, -10) == 10
assert math.gcd(-10, -10) == 10
assert math.gcd(0, 5) == 5
assert math.gcd(5, 0) == 5
assert math.gcd(0, 0) == 0
# factorial - n!
# test fmod
assert math.fmod(-2.0, 3.0) == -2.0
assert math.fmod(2.0, 3.0) == 2.0
assert math.fmod(4.0, 3.0) == 1.0
assert math.fmod(-4.0, 3.0) == -1.0
# test modf
x, y = math.modf(1.5)
assert isclose(x, 0.5)
assert isclose(y, 1.0)
x, y = math.modf(-1.5)
assert isclose(x, -0.5)
assert isclose(y, -1.0)
# test factorial
assert math.factorial(0) == 1
assert math.factorial(1) == 1
assert math.factorial(2) == 2
assert math.factorial(3) == 6
assert math.factorial(4) == 24
assert math.factorial(5) == 120
assert math.factorial(10) == 3628800
# ============================================================
# Special value tests
# ============================================================
# Test NaN generation from invalid operations
a = -0.1
a = a ** a
assert math.isnan(a)
assert not math.isinf(a)
# Test infinity
assert math.isinf(float("inf"))
assert math.isinf(float("-inf"))
assert not math.isnan(float("inf"))

View File

@ -41,15 +41,15 @@ assertEqual(math.gcd(10, 10), 10)
assertEqual(math.gcd(-10, 10), 10)
# test isfinite, isinf, isnan
assertEqual(math.isfinite(math.pi), True)
assertEqual(math.isfinite(math.inf), False)
assertEqual(math.isfinite(math.nan), False)
assertEqual(math.isinf(math.pi), False)
assertEqual(math.isinf(math.inf), True)
assertEqual(math.isinf(math.nan), False)
assertEqual(math.isnan(math.pi), False)
assertEqual(math.isnan(math.inf), False)
assertEqual(math.isnan(math.nan), True)
assertEqual(math.isfinite(math.pi), 1)
assertEqual(math.isfinite(math.inf), 0)
assertEqual(math.isfinite(math.nan), 0)
assertEqual(math.isinf(math.pi), 0)
assertEqual(math.isinf(math.inf), 1)
assertEqual(math.isinf(math.nan), 0)
assertEqual(math.isnan(math.pi), 0)
assertEqual(math.isnan(math.inf), 0)
assertEqual(math.isnan(math.nan), 1)
# test exp
assertEqual(math.exp(0), 1.0)