Compare commits

...

8 Commits

Author SHA1 Message Date
BLUELOVETH
fece79b169
Merge pull request #280 from 16bit-ykiko/pybind11
experiment implementation of pybind11.
2024-06-18 21:06:22 +08:00
ykiko
95553438e1 experiment implementation of pybind11. 2024-06-18 20:51:28 +08:00
BLUELOVETH
a9d296dedc
Merge pull request #278 from 16bit-ykiko/fix_exec
fix py_exec and py_eval.
2024-06-18 20:46:15 +08:00
ykiko
21d886f1a4 fix format. 2024-06-18 20:39:02 +08:00
ykiko
435ded95b5 fix format. 2024-06-18 20:37:57 +08:00
ykiko
f937fc1da8 fix format. 2024-06-18 20:37:27 +08:00
ykiko
71432a4054 fix format. 2024-06-18 20:36:42 +08:00
ykiko
cc4dd34c86 fix py_exec and py_eval. 2024-06-18 19:49:30 +08:00
17 changed files with 2927 additions and 3 deletions

2
include/pybind11/embed.h Normal file
View File

@ -0,0 +1,2 @@
#pragma once
#include "pybind11.h"

View File

@ -0,0 +1,2 @@
#pragma once
#include "pybind11.h"

View File

@ -0,0 +1,173 @@
#pragma once
#include "builtins.h"
namespace pybind11 {
// implement iterator methods for interface
template <typename Derived>
inline iterator interface<Derived>::begin() const {
return handle(vm->py_iter(this->ptr()));
}
template <typename Derived>
inline iterator interface<Derived>::end() const {
return iterator::sentinel();
}
template <typename Derived>
inline str interface<Derived>::package() const {
return handle(this->attr(pkpy::__package__));
}
template <typename Derived>
inline str interface<Derived>::name() const {
return handle(this->attr(pkpy::__name__));
}
template <typename Derived>
inline str interface<Derived>::repr() const {
return handle(str(vm->py_repr(this->ptr())));
}
template <typename policy>
class accessor : public interface<accessor<policy>> {
using key_type = typename policy::key_type;
handle m_obj;
mutable handle m_value;
key_type m_key;
friend interface<handle>;
friend interface<accessor<policy>>;
friend tuple;
friend list;
friend dict;
accessor(const handle& obj, key_type key) : m_obj(obj), m_value(), m_key(key) {}
public:
pkpy::PyVar ptr() const {
if(!m_value) { m_value = policy::get(m_obj, m_key); }
return m_value.ptr();
}
template <typename Value>
accessor& operator= (Value&& value) && {
policy::set(m_obj, m_key, std::forward<Value>(value));
return *this;
}
template <typename Value>
accessor& operator= (Value&& value) & {
m_value = std::forward<Value>(value);
return *this;
}
template <typename T>
T cast() const {
return operator handle ().template cast<T>();
}
operator handle () const { return ptr(); }
};
namespace policy {
struct attr {
using key_type = pkpy::StrName;
static handle get(const handle& obj, pkpy::StrName key) { return vm->getattr(obj.ptr(), key); }
static void set(const handle& obj, pkpy::StrName key, const handle& value) {
vm->setattr(obj.ptr(), key, value.ptr());
}
};
struct item {
using key_type = handle;
static handle get(const handle& obj, const handle& key) {
return vm->call(vm->py_op("getitem"), obj.ptr(), key.ptr());
}
static void set(const handle& obj, const handle& key, const handle& value) {
vm->call(vm->py_op("setitem"), obj.ptr(), key.ptr(), value.ptr());
}
};
struct tuple {
using key_type = int;
static handle get(const handle& obj, int key) { return obj._as<pkpy::Tuple>()[key]; }
static void set(const handle& obj, size_t key, const handle& value) { obj._as<pkpy::Tuple>()[key] = value.ptr(); }
};
struct list {
using key_type = int;
static handle get(const handle& obj, size_t key) { return obj._as<pkpy::List>()[key]; }
static void set(const handle& obj, size_t key, const handle& value) { obj._as<pkpy::List>()[key] = value.ptr(); }
};
struct dict {
using key_type = handle;
static handle get(const handle& obj, const handle& key) { return obj.cast<pybind11::dict>().getitem(key); }
static void set(const handle& obj, const handle& key, const handle& value) {
obj.cast<pybind11::dict>().setitem(key, value);
}
};
} // namespace policy
// implement other methods of interface
template <typename Derived>
inline attr_accessor interface<Derived>::attr(pkpy::StrName key) const {
return attr_accessor(this->ptr(), key);
}
template <typename Derived>
inline attr_accessor interface<Derived>::attr(const char* key) const {
return attr_accessor(this->ptr(), pkpy::StrName(key));
}
template <typename Derived>
inline attr_accessor interface<Derived>::attr(const handle& key) const {
return attr_accessor(this->ptr(), pkpy::StrName(key._as<pkpy::Str>()));
}
template <typename Derived>
inline attr_accessor interface<Derived>::doc() const {
return attr_accessor(this->ptr(), pkpy::StrName("__doc__"));
}
template <typename Derived>
inline item_accessor interface<Derived>::operator[] (int index) const {
return item_accessor(this->ptr(), int_(index));
}
template <typename Derived>
inline item_accessor interface<Derived>::operator[] (const char* key) const {
return item_accessor(this->ptr(), str(key));
}
template <typename Derived>
inline item_accessor interface<Derived>::operator[] (const handle& key) const {
return item_accessor(this->ptr(), key);
}
inline tuple_accessor tuple::operator[] (int i) const { return tuple_accessor(this->ptr(), i); }
inline list_accessor list::operator[] (int i) const { return list_accessor(this->ptr(), i); }
inline dict_accessor dict::operator[] (int index) const { return dict_accessor(this->ptr(), int_(index)); }
inline dict_accessor dict::operator[] (std::string_view key) const { return dict_accessor(this->ptr(), str(key)); }
inline dict_accessor dict::operator[] (const handle& key) const { return dict_accessor(this->ptr(), key); }
} // namespace pybind11

View File

@ -0,0 +1,222 @@
#pragma once
#include "types.h"
#include "type_traits.h"
namespace pybind11 {
inline object eval(std::string_view code, const handle& global = none{}, handle local = none{}) {
return vm->py_eval(code, global.ptr(), local.ptr());
}
inline void exec(std::string_view code, const handle& global = none{}, handle local = none{}) {
vm->py_exec(code, global.ptr(), local.ptr());
}
/// globas() in pkpy is immutable, your changes will not be reflected in the Python interpreter
inline dict globals() {
auto& proxy = eval("globals()")._as<pkpy::MappingProxy>().attr();
dict result;
#if PK_VERSION_MAJOR == 2
proxy.apply(
[](pkpy::StrName key, pkpy::PyVar value, void* data) {
auto& dict = static_cast<pybind11::dict*>(data)->_as<pkpy::Dict>();
auto key_ = pybind11::str(key.sv()).ptr();
dict.set(vm, key_, value);
},
&result);
#else
proxy.apply([&](pkpy::StrName key, pkpy::PyVar value) {
result.setitem(str(key.sv()), value);
});
#endif
return result;
}
// wrapper for builtin functions in Python
inline bool hasattr(const handle& obj, const handle& name) {
return vm->getattr(obj.ptr(), name._as<pkpy::Str>(), false) != nullptr;
}
inline bool hasattr(const handle& obj, const char* name) { return vm->getattr(obj.ptr(), name, false) != nullptr; }
inline void delattr(const handle& obj, const handle& name) { vm->delattr(obj.ptr(), name._as<pkpy::Str>()); }
inline void delattr(const handle& obj, const char* name) { vm->delattr(obj.ptr(), name); }
inline object getattr(const handle& obj, const handle& name) { return vm->getattr(obj.ptr(), name._as<pkpy::Str>()); }
inline object getattr(const handle& obj, const char* name) { return vm->getattr(obj.ptr(), name); }
inline object getattr(const handle& obj, const handle& name, const handle& default_) {
auto attr = vm->getattr(obj.ptr(), name._as<pkpy::Str>(), false);
if(attr) { return attr; }
return default_;
}
inline object getattr(const handle& obj, const char* name, const handle& default_) {
auto attr = vm->getattr(obj.ptr(), name, false);
if(attr) { return attr; }
return default_;
}
inline void setattr(const handle& obj, const handle& name, const handle& value) {
vm->setattr(obj.ptr(), name._as<pkpy::Str>(), value.ptr());
}
inline void setattr(const handle& obj, const char* name, const handle& value) {
vm->setattr(obj.ptr(), name, value.ptr());
}
template <typename T>
inline bool isinstance(const handle& obj) {
return type_visitor::check<T>(obj);
}
template <>
inline bool isinstance<handle>(const handle&) = delete;
inline bool isinstance(const handle& obj, const handle& type) {
return vm->isinstance(obj.ptr(), type._as<pkpy::Type>());
}
inline int64_t hash(const handle& obj) { return vm->py_hash(obj.ptr()); }
template <typename T, typename SFINAE = void>
struct type_caster;
template <typename T>
handle cast(T&& value, return_value_policy policy, handle parent) {
// decay_t can resolve c-array type, but remove_cv_ref_t can't.
using underlying_type = std::decay_t<T>;
if constexpr(std::is_convertible_v<underlying_type, handle>) {
return std::forward<T>(value);
} else {
static_assert(!is_multiple_pointer_v<underlying_type>, "multiple pointer is not supported.");
static_assert(!std::is_void_v<std::remove_pointer_t<underlying_type>>,
"void* is not supported, consider using py::capsule.");
// resolve for automatic policy.
if(policy == return_value_policy::automatic) {
policy = std::is_pointer_v<underlying_type> ? return_value_policy::take_ownership
: std::is_lvalue_reference_v<T&&> ? return_value_policy::copy
: return_value_policy::move;
} else if(policy == return_value_policy::automatic_reference) {
policy = std::is_pointer_v<underlying_type> ? return_value_policy::reference
: std::is_lvalue_reference_v<T&&> ? return_value_policy::copy
: return_value_policy::move;
}
return type_caster<underlying_type>::cast(std::forward<T>(value), policy, parent);
}
}
template <typename T>
T cast(const handle& obj, bool convert) {
assert(obj.ptr() != nullptr);
type_caster<T> caster = {};
if(caster.load(obj, convert)) {
return caster.value;
} else {
std::string msg = "cast python instance to c++ failed, ";
msg += "obj type is: {";
msg += type::of(obj).name();
msg += "}, target type is: {";
msg += type_name<T>();
msg += "}.";
vm->TypeError(msg);
PK_UNREACHABLE();
}
}
struct kwargs_proxy {
handle value;
};
struct args_proxy {
handle value;
kwargs_proxy operator* () { return kwargs_proxy{value}; }
};
template <typename Derived>
args_proxy interface<Derived>::operator* () const {
return args_proxy{ptr()};
}
template <typename... Args>
handle interpreter::vectorcall(const handle& callable, const handle& self, const Args&... args) {
vm->s_data.push(callable.ptr());
#if PK_VERSION_MAJOR == 2
vm->s_data.push(self ? self.ptr() : PY_NULL);
#else
vm->s_data.push(self ? self.ptr() : pkpy::PY_NULL);
#endif
int argc = 0;
int kwargsc = 0;
auto push_arg = [&](const handle& value) {
assert(value);
vm->s_data.push(value.ptr());
argc++;
};
auto push_named_arg = [&](std::string_view name, const handle& value) {
assert(value);
vm->s_data.push(int_(pkpy::StrName(name).index).ptr());
vm->s_data.push(value.ptr());
kwargsc++;
};
auto foreach_ = [&](const auto& arg) {
using T = std::decay_t<decltype(arg)>;
if constexpr(std::is_convertible_v<T, handle>) {
push_arg(arg);
} else if constexpr(std::is_same_v<T, args_proxy>) {
pybind11::tuple args = arg.value.template cast<pybind11::tuple>();
for(auto item: args) {
push_arg(item);
}
} else if constexpr(std::is_same_v<T, pybind11::arg>) {
push_named_arg(arg.name, arg.default_);
} else if constexpr(std::is_same_v<T, kwargs_proxy>) {
pybind11::dict kwargs = arg.value.template cast<pybind11::dict>();
for(auto item: kwargs) {
str name = item.first.template cast<str>();
push_named_arg(name, item.second);
}
} else {
static_assert(dependent_false<T>, "unsupported type");
}
};
(foreach_(args), ...);
return vm->vectorcall(argc, kwargsc);
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
inline object interface<Derived>::operator() (Args&&... args) const {
auto _cast = [&](auto&& arg) {
using T = std::decay_t<decltype(arg)>;
if constexpr(std::is_same_v<T, pybind11::arg> || std::is_same_v<T, kwargs_proxy> ||
std::is_same_v<T, args_proxy> || std::is_convertible_v<T, handle>) {
return arg;
} else {
return pybind11::cast(std::forward<decltype(arg)>(arg), policy);
}
};
return interpreter::vectorcall(ptr(), handle(), _cast(std::forward<Args>(args))...);
}
template <typename... Args>
void print(Args&&... args) {
handle print = getattr(vm->builtins, "print");
print(std::forward<Args>(args)...);
}
} // namespace pybind11

View File

@ -0,0 +1,174 @@
#pragma once
#include "instance.h"
#include "accessor.h"
namespace pybind11 {
using pkpy::is_floating_point_v;
using pkpy::is_integral_v;
template <typename T>
constexpr inline bool is_string_v =
std::is_same_v<T, const char*> || std::is_same_v<T, std::string> || std::is_same_v<T, std::string_view>;
template <typename T>
constexpr bool is_pointer_v = std::is_pointer_v<T> && !std::is_same_v<T, char*> && !std::is_same_v<T, const char*>;
template <typename T, typename>
struct type_caster;
template <>
struct type_caster<bool> {
bool value;
bool load(const handle& src, bool) {
if(isinstance<pybind11::bool_>(src)) {
value = pkpy::_py_cast<bool>(vm, src.ptr());
return true;
}
return false;
}
static handle cast(bool src, return_value_policy, handle) { return src ? vm->True : vm->False; }
};
template <typename T>
struct type_caster<T, std::enable_if_t<is_integral_v<T>>> {
T value;
bool load(const handle& src, bool convert) {
if(isinstance<pybind11::int_>(src)) {
value = pkpy::_py_cast<T>(vm, src.ptr());
return true;
}
return false;
}
static handle cast(T src, return_value_policy, handle) { return pkpy::py_var(vm, src); }
};
template <typename T>
struct type_caster<T, std::enable_if_t<is_floating_point_v<T>>> {
T value;
bool load(const handle& src, bool convert) {
if(isinstance<pybind11::float_>(src)) {
value = pkpy::_py_cast<T>(vm, src.ptr());
return true;
}
if(convert && isinstance<pybind11::int_>(src)) {
value = pkpy::_py_cast<int64_t>(vm, src.ptr());
return true;
}
return false;
}
static handle cast(T src, return_value_policy, handle) { return pkpy::py_var(vm, src); }
};
template <typename T>
struct type_caster<T, std::enable_if_t<is_string_v<T>>> {
T value;
bool load(const handle& src, bool) {
if(isinstance<pybind11::str>(src)) {
auto& str = src._as<pkpy::Str>();
if constexpr(std::is_same_v<T, std::string>) {
value = str;
} else if constexpr(std::is_same_v<T, std::string_view>) {
value = str;
} else if constexpr(std::is_same_v<T, const char*>) {
value = str.c_str();
}
return true;
}
return false;
}
template <typename U>
static handle cast(U&& src, return_value_policy, handle) {
return str(std::forward<U>(src));
}
};
template <typename T>
struct type_caster<T, std::enable_if_t<is_pyobject_v<T>>> {
T value;
bool load(const handle& src, bool) {
if(isinstance<T>(src)) {
value = src;
return true;
}
return false;
}
static handle cast(const handle& src, return_value_policy, handle) { return src; }
};
template <typename T, typename>
struct type_caster {
struct value_wrapper {
T* pointer;
operator T& () { return *pointer; }
};
value_wrapper value;
using underlying_type = std::remove_pointer_t<decltype(value.pointer)>;
bool load(handle src, bool convert) {
if(isinstance<underlying_type>(src)) {
auto& i = src._as<instance>();
value.pointer = &i._as<underlying_type>();
return true;
}
return false;
}
template <typename U>
static handle cast(U&& value, return_value_policy policy, const handle& parent = handle()) {
const auto& info = typeid(underlying_type);
auto type = type_visitor::type<underlying_type>();
return instance::create(std::forward<U>(value), type, policy, parent.ptr());
// TODO: support implicit cast
}
};
template <typename T>
struct type_caster<T, std::enable_if_t<is_pointer_v<T> || std::is_reference_v<T>>> {
using underlying =
std::remove_cv_t<std::conditional_t<is_pointer_v<T>, std::remove_pointer_t<T>, std::remove_reference_t<T>>>;
struct wrapper {
type_caster<underlying> caster;
operator T () {
if constexpr(std::is_pointer_v<T>) {
return caster.value.pointer;
} else {
return caster.value;
}
}
};
wrapper value;
bool load(const handle& src, bool convert) { return value.caster.load(src, convert); }
template <typename U>
static handle cast(U&& value, return_value_policy policy, const handle& parent) {
return type_caster<underlying>::cast(std::forward<U>(value), policy, parent);
}
};
} // namespace pybind11

View File

@ -0,0 +1,186 @@
#pragma once
#include "module.h"
#include <vector>
namespace pybind11 {
struct dynamic_attr {};
template <typename T, typename Base = void>
class class_ : public type {
protected:
handle m_scope;
public:
using type::type;
using underlying_type = T;
template <typename... Args>
class_(const handle& scope, const char* name, const Args&... args) :
m_scope(scope), type(type_visitor::create<T, Base>(scope, name)) {
auto& info = type_info::of<T>();
info.name = name;
// bind __new__
interpreter::bind_func(m_ptr, pkpy::__new__, -1, [](pkpy::VM* vm, pkpy::ArgsView args) {
auto cls = handle(args[0])._as<pkpy::Type>();
// check if the class has constructor, if not, raise error
if(vm->find_name_in_mro(cls, pkpy::__init__) == nullptr) {
vm->RuntimeError("if you want to create instance of bound class, you must bind constructor for it");
}
auto var = instance::create(cls, &type_info::of<T>());
if constexpr(types_count_v<dynamic_attr, Args...> != 0) {
#if PK_VERSION_MAJOR == 2
var.get()->_attr = new pkpy::NameDict();
#else
var->_enable_instance_dict();
#endif
}
return var;
});
}
/// bind constructor
template <typename... Args, typename... Extra>
class_& def(init<Args...>, const Extra&... extra) {
if constexpr(!std::is_constructible_v<T, Args...>) {
static_assert(std::is_constructible_v<T, Args...>, "Invalid constructor arguments");
} else {
impl::bind_function(
*this,
"__init__",
[](T* self, Args... args) {
new (self) T(args...);
},
pkpy::BindType::DEFAULT,
extra...);
return *this;
}
}
/// bind member function
template <typename Fn, typename... Extra>
class_& def(const char* name, Fn&& f, const Extra&... extra) {
using first = std::tuple_element_t<0, callable_args_t<remove_cvref_t<Fn>>>;
constexpr bool is_first_base_of_v = std::is_base_of_v<remove_cvref_t<first>, T>;
if constexpr(!is_first_base_of_v) {
static_assert(is_first_base_of_v,
"If you want to bind member function, the first argument must be the base class");
} else {
impl::bind_function(*this, name, std::forward<Fn>(f), pkpy::BindType::DEFAULT, extra...);
}
return *this;
}
/// bind operators
template <typename Operator, typename... Extras>
class_& def(Operator op, const Extras&... extras) {
op.execute(*this, extras...);
return *this;
}
// TODO: factory function
/// bind static function
template <typename Fn, typename... Extra>
class_& def_static(const char* name, Fn&& f, const Extra&... extra) {
impl::bind_function(*this, name, std::forward<Fn>(f), pkpy::BindType::STATICMETHOD, extra...);
return *this;
}
template <typename MP, typename... Extras>
class_& def_readwrite(const char* name, MP mp, const Extras&... extras) {
if constexpr(!std::is_member_object_pointer_v<MP>) {
static_assert(std::is_member_object_pointer_v<MP>, "def_readwrite only supports pointer to data member");
} else {
impl::bind_property(*this, name, mp, mp, extras...);
}
return *this;
}
template <typename MP, typename... Extras>
class_& def_readonly(const char* name, MP mp, const Extras&... extras) {
if constexpr(!std::is_member_object_pointer_v<MP>) {
static_assert(std::is_member_object_pointer_v<MP>, "def_readonly only supports pointer to data member");
} else {
impl::bind_property(*this, name, mp, nullptr, extras...);
}
return *this;
}
template <typename Getter, typename Setter, typename... Extras>
class_& def_property(const char* name, Getter&& g, Setter&& s, const Extras&... extras) {
impl::bind_property(*this, name, std::forward<Getter>(g), std::forward<Setter>(s), extras...);
return *this;
}
template <typename Getter, typename... Extras>
class_& def_property_readonly(const char* name, Getter&& mp, const Extras&... extras) {
impl::bind_property(*this, name, std::forward<Getter>(mp), nullptr, extras...);
return *this;
}
template <typename Var, typename... Extras>
class_& def_readwrite_static(const char* name, Var& mp, const Extras&... extras) {
static_assert(
dependent_false<Var>,
"define static properties requires metaclass. This is a complex feature with few use cases, so it may never be implemented.");
return *this;
}
template <typename Var, typename... Extras>
class_& def_readonly_static(const char* name, Var& mp, const Extras&... extras) {
static_assert(
dependent_false<Var>,
"define static properties requires metaclass. This is a complex feature with few use cases, so it may never be implemented.");
return *this;
}
template <typename Getter, typename Setter, typename... Extras>
class_& def_property_static(const char* name, Getter&& g, Setter&& s, const Extras&... extras) {
static_assert(
dependent_false<Getter>,
"define static properties requires metaclass. This is a complex feature with few use cases, so it may never be implemented.");
return *this;
}
};
template <typename T, typename... Others>
class enum_ : public class_<T, Others...> {
std::vector<std::pair<const char*, handle>> m_values;
public:
using Base = class_<T, Others...>;
using class_<T, Others...>::class_;
template <typename... Args>
enum_(const handle& scope, const char* name, Args&&... args) :
class_<T, Others...>(scope, name, std::forward<Args>(args)...) {
Base::def_property_readonly("value", [](T& self) {
return int_(static_cast<std::underlying_type_t<T>>(self));
});
}
enum_& value(const char* name, T value) {
handle var = type_caster<T>::cast(value, return_value_policy::copy);
this->m_ptr->attr().set(name, var.ptr());
m_values.emplace_back(name, var);
return *this;
}
enum_& export_values() {
for(auto& [name, value]: m_values) {
Base::m_scope.ptr()->attr().set(name, value.ptr());
}
return *this;
}
};
} // namespace pybind11

View File

@ -0,0 +1,551 @@
#pragma once
#include "cast.h"
#include <map>
namespace pybind11 {
// append the overload to the beginning of the overload list
struct prepend {};
template <typename... Args>
struct init {};
// TODO: support more customized tags
//
// template <std::size_t Nurse, std::size_t... Patients>
// struct keep_alive {};
//
// template <typename T>
// struct call_guard {
// static_assert(std::is_default_constructible_v<T>, "call_guard must be default constructible");
// };
//
// struct kw_only {};
//
// struct pos_only {};
class cpp_function : public function {
PYBIND11_TYPE_IMPLEMENT(function, pkpy::NativeFunc, vm->tp_native_func);
public:
template <typename Fn, typename... Extras>
cpp_function(Fn&& f, const Extras&... extras) {}
template <typename T>
decltype(auto) get_userdata_as() {
#if PK_VERSION_MAJOR == 2
return self()._userdata.as<T>();
#else
return self()._userdata._cast<T>();
#endif
}
template <typename T>
void set_userdata(T&& value) {
self()._userdata = std::forward<T>(value);
}
};
} // namespace pybind11
namespace pybind11::impl {
template <typename Callable,
typename Extra,
typename Args = callable_args_t<Callable>,
typename IndexSequence = std::make_index_sequence<std::tuple_size_v<Args>>>
struct template_parser;
class function_record {
private:
template <typename C, typename E, typename A, typename I>
friend struct template_parser;
struct arguments_t {
std::vector<pkpy::StrName> names;
std::vector<handle> defaults;
};
using destructor_t = void (*)(function_record*);
using wrapper_t = handle (*)(function_record&, pkpy::ArgsView, bool convert, handle parent);
static_assert(std::is_trivially_copyable_v<pkpy::StrName>);
private:
union {
void* data;
char buffer[16];
};
wrapper_t wrapper = nullptr;
function_record* next = nullptr;
arguments_t* arguments = nullptr;
destructor_t destructor = nullptr;
const char* signature = nullptr;
return_value_policy policy = return_value_policy::automatic;
public:
template <typename Fn, typename... Extras>
function_record(Fn&& f, const Extras&... extras) {
using Callable = std::decay_t<Fn>;
if constexpr(std::is_trivially_copyable_v<Callable> && sizeof(Callable) <= sizeof(buffer)) {
// if the callable object is trivially copyable and the size is less than 16 bytes, store it in the
// buffer
new (buffer) auto(std::forward<Fn>(f));
destructor = [](function_record* self) {
reinterpret_cast<Callable*>(self->buffer)->~Callable();
};
} else {
// otherwise, store it in the heap
data = new auto(std::forward<Fn>(f));
destructor = [](function_record* self) {
delete static_cast<Callable*>(self->data);
};
}
using Parser = template_parser<Callable, std::tuple<Extras...>>;
Parser::initialize(*this, extras...);
wrapper = Parser::wrapper;
}
function_record(const function_record&) = delete;
function_record& operator= (const function_record&) = delete;
function_record& operator= (function_record&&) = delete;
function_record(function_record&& other) noexcept {
std::memcpy(this, &other, sizeof(function_record));
std::memset(&other, 0, sizeof(function_record));
}
~function_record() {
if(destructor) { destructor(this); }
if(arguments) { delete arguments; }
if(next) { delete next; }
if(signature) { delete[] signature; }
}
void append(function_record* record) {
function_record* p = this;
while(p->next) {
p = p->next;
}
p->next = record;
}
template <typename T>
T& _as() {
if constexpr(std::is_trivially_copyable_v<T> && sizeof(T) <= sizeof(buffer)) {
return *reinterpret_cast<T*>(buffer);
} else {
return *static_cast<T*>(data);
}
}
handle operator() (pkpy::ArgsView view) {
function_record* p = this;
// foreach function record and call the function with not convert
while(p != nullptr) {
handle result = p->wrapper(*p, view, false, {});
if(result) { return result; }
p = p->next;
}
p = this;
// foreach function record and call the function with convert
while(p != nullptr) {
handle result = p->wrapper(*p, view, true, {});
if(result) { return result; }
p = p->next;
}
std::string msg = "no matching function found, function signature:\n";
std::size_t index = 0;
p = this;
while(p != nullptr) {
msg += " ";
msg += p->signature;
msg += "\n";
p = p->next;
}
vm->TypeError(msg);
PK_UNREACHABLE();
}
};
template <typename Fn, std::size_t... Is, typename... Args>
handle invoke(Fn&& fn,
std::index_sequence<Is...>,
std::tuple<type_caster<Args>...>& casters,
return_value_policy policy,
handle parent) {
using underlying_type = std::decay_t<Fn>;
using return_type = callable_return_t<underlying_type>;
constexpr bool is_void = std::is_void_v<return_type>;
constexpr bool is_member_function_pointer = std::is_member_function_pointer_v<underlying_type>;
if constexpr(is_member_function_pointer) {
// helper function to unpack the arguments to call the member pointer
auto unpack = [&](class_type_t<underlying_type>& self, auto&... args) {
return (self.*fn)(args...);
};
if constexpr(!is_void) {
return pybind11::cast(unpack(std::get<Is>(casters).value...), policy, parent);
} else {
unpack(std::get<Is>(casters).value...);
return vm->None;
}
} else {
if constexpr(!is_void) {
return pybind11::cast(fn(std::get<Is>(casters).value...), policy, parent);
} else {
fn(std::get<Is>(casters).value...);
return vm->None;
}
}
}
struct arguments_info_t {
int argc = 0;
int args_pos = -1;
int kwargs_pos = -1;
};
struct extras_info_t {
int doc_pos = -1;
int named_argc = 0;
int policy_pos = -1;
};
template <typename Callable, typename... Extras, typename... Args, std::size_t... Is>
struct template_parser<Callable, std::tuple<Extras...>, std::tuple<Args...>, std::index_sequence<Is...>> {
constexpr static arguments_info_t parse_arguments() {
constexpr auto args_count = types_count_v<args, Args...>;
constexpr auto kwargs_count = types_count_v<kwargs, Args...>;
static_assert(args_count <= 1, "py::args can occur at most once");
static_assert(kwargs_count <= 1, "py::kwargs can occur at most once");
constexpr auto args_pos = type_index_v<args, Args...>;
constexpr auto kwargs_pos = type_index_v<kwargs, Args...>;
if constexpr(kwargs_count == 1) {
static_assert(kwargs_pos == sizeof...(Args) - 1, "py::kwargs must be the last argument");
// FIXME: temporarily, args and kwargs must be at the end of the arguments list
if constexpr(args_count == 1) {
static_assert(args_pos == kwargs_pos - 1, "py::args must be before py::kwargs");
}
}
return {sizeof...(Args), args_pos, kwargs_pos};
}
constexpr static extras_info_t parse_extras() {
constexpr auto doc_count = types_count_v<const char*, Extras...>;
constexpr auto policy_count = types_count_v<return_value_policy, Extras...>;
static_assert(doc_count <= 1, "doc can occur at most once");
static_assert(policy_count <= 1, "return_value_policy can occur at most once");
constexpr auto doc_pos = type_index_v<const char*, Extras...>;
constexpr auto policy_pos = type_index_v<return_value_policy, Extras...>;
constexpr auto named_argc = types_count_v<arg, Extras...>;
constexpr auto normal_argc =
sizeof...(Args) - (arguments_info.args_pos != -1) - (arguments_info.kwargs_pos != -1);
static_assert(named_argc == 0 || named_argc == normal_argc,
"named arguments must be the same as the number of function arguments");
return {doc_pos, named_argc, policy_pos};
}
constexpr inline static auto arguments_info = parse_arguments();
constexpr inline static auto extras_info = parse_extras();
static void initialize(function_record& record, const Extras&... extras) {
auto extras_tuple = std::make_tuple(extras...);
constexpr static bool has_named_args = (extras_info.named_argc > 0);
// set return value policy
if constexpr(extras_info.policy_pos != -1) { record.policy = std::get<extras_info.policy_pos>(extras_tuple); }
// TODO: set others
// set default arguments
if constexpr(has_named_args) {
record.arguments = new function_record::arguments_t();
auto add_arguments = [&](const auto& arg) {
if constexpr(std::is_same_v<pybind11::arg, remove_cvref_t<decltype(arg)>>) {
auto& arguments = *record.arguments;
arguments.names.emplace_back(arg.name);
arguments.defaults.emplace_back(arg.default_);
}
};
(add_arguments(extras), ...);
}
// set signature
{
std::string sig = "(";
std::size_t index = 0;
auto append = [&](auto _t) {
using T = pybind11_decay_t<typename decltype(_t)::type>;
if constexpr(std::is_same_v<T, args>) {
sig += "*args";
} else if constexpr(std::is_same_v<T, kwargs>) {
sig += "**kwargs";
} else if constexpr(has_named_args) {
sig += record.arguments->names[index].c_str();
sig += ": ";
sig += type_info::of<T>().name;
if(record.arguments->defaults[index]) {
sig += " = ";
sig += record.arguments->defaults[index].repr();
}
} else {
sig += "_: ";
sig += type_info::of<T>().name;
}
if(index + 1 < arguments_info.argc) { sig += ", "; }
index++;
};
(append(type_identity<Args>{}), ...);
sig += ")";
char* buffer = new char[sig.size() + 1];
std::memcpy(buffer, sig.data(), sig.size());
buffer[sig.size()] = '\0';
record.signature = buffer;
}
}
static handle wrapper(function_record& record, pkpy::ArgsView view, bool convert, handle parent) {
constexpr auto argc = arguments_info.argc;
constexpr auto named_argc = extras_info.named_argc;
constexpr auto args_pos = arguments_info.args_pos;
constexpr auto kwargs_pos = arguments_info.kwargs_pos;
constexpr auto normal_argc = argc - (args_pos != -1) - (kwargs_pos != -1);
// avoid gc call in bound function
vm->heap.gc_scope_lock();
// add 1 to avoid zero-size array when argc is 0
handle stack[argc + 1] = {};
// ensure the number of passed arguments is no greater than the number of parameters
if(args_pos == -1 && view.size() > normal_argc) { return handle(); }
// if have default arguments, load them
if constexpr(named_argc > 0) {
auto& defaults = record.arguments->defaults;
std::memcpy(stack, defaults.data(), defaults.size() * sizeof(handle));
}
// load arguments from call arguments
const auto size = std::min(view.size(), normal_argc);
std::memcpy(stack, view.begin(), size * sizeof(handle));
// pack the args
if constexpr(args_pos != -1) {
const auto n = std::max(view.size() - normal_argc, 0);
tuple args = tuple(n);
for(std::size_t i = 0; i < n; ++i) {
args[i] = view[normal_argc + i];
}
stack[args_pos] = args;
}
// resolve keyword arguments
const auto n = vm->s_data._sp - view.end();
std::size_t index = 0;
if constexpr(named_argc > 0) {
std::size_t arg_index = 0;
auto& arguments = *record.arguments;
while(arg_index < named_argc && index < n) {
const auto key = pkpy::_py_cast<pkpy::i64>(vm, view.end()[index]);
const auto value = view.end()[index + 1];
const auto name = pkpy::StrName(key);
auto& arg_name = record.arguments->names[arg_index];
if(name == arg_name) {
stack[arg_index] = value;
index += 2;
}
arg_index += 1;
}
}
// pack the kwargs
if constexpr(kwargs_pos != -1) {
dict kwargs;
while(index < n) {
const auto key = pkpy::_py_cast<pkpy::i64>(vm, view.end()[index]);
const str name = str(pkpy::StrName(key).sv());
kwargs[name] = view.end()[index + 1];
index += 2;
}
stack[kwargs_pos] = kwargs;
}
// if have rest keyword arguments, call fails
if(index != n) { return handle(); }
// check if all the arguments are valid
for(std::size_t i = 0; i < argc; ++i) {
if(!stack[i]) { return handle(); }
}
// ok, all the arguments are valid, call the function
std::tuple<type_caster<Args>...> casters;
// check type compatibility
if(((std::get<Is>(casters).load(stack[Is], convert)) && ...)) {
return invoke(record._as<Callable>(), std::index_sequence<Is...>{}, casters, record.policy, parent);
}
return handle();
}
};
inline auto _wrapper(pkpy::VM* vm, pkpy::ArgsView view) {
auto&& record = unpack<function_record>(view);
return record(view).ptr();
}
template <typename Fn, typename... Extras>
handle bind_function(const handle& obj, const char* name, Fn&& fn, pkpy::BindType type, const Extras&... extras) {
// do not use cpp_function directly to avoid unnecessary reference count change
pkpy::PyVar var = obj.ptr();
cpp_function callable = var->attr().try_get(name);
// if the function is not bound yet, bind it
if(!callable) {
auto record = function_record(std::forward<Fn>(fn), extras...);
void* data = interpreter::take_ownership(std::move(record));
callable = interpreter::bind_func(var, name, -1, _wrapper, data);
} else {
function_record* record = new function_record(std::forward<Fn>(fn), extras...);
function_record* last = callable.get_userdata_as<function_record*>();
if constexpr((types_count_v<prepend, Extras...> != 0)) {
// if prepend is specified, append the new record to the beginning of the list
fn.set_userdata(record);
record->append(last);
} else {
// otherwise, append the new record to the end of the list
last->append(record);
}
}
return callable;
}
} // namespace pybind11::impl
namespace pybind11::impl {
template <typename Getter>
pkpy::PyVar getter_wrapper(pkpy::VM* vm, pkpy::ArgsView view) {
handle result = vm->None;
auto&& getter = unpack<Getter>(view);
constexpr auto policy = return_value_policy::reference_internal;
if constexpr(std::is_member_pointer_v<Getter>) {
using Self = class_type_t<Getter>;
auto& self = handle(view[0])._as<instance>()._as<Self>();
if constexpr(std::is_member_object_pointer_v<Getter>) {
// specialize for pointer to data member
result = cast(self.*getter, policy, view[0]);
} else {
// specialize for pointer to member function
result = cast((self.*getter)(), policy, view[0]);
}
} else {
// specialize for function pointer and lambda
using Self = remove_cvref_t<std::tuple_element_t<0, callable_args_t<Getter>>>;
auto& self = handle(view[0])._as<instance>()._as<Self>();
result = cast(getter(self), policy, view[0]);
}
return result.ptr();
}
template <typename Setter>
pkpy::PyVar setter_wrapper(pkpy::VM* vm, pkpy::ArgsView view) {
auto&& setter = unpack<Setter>(view);
if constexpr(std::is_member_pointer_v<Setter>) {
using Self = class_type_t<Setter>;
auto& self = handle(view[0])._as<instance>()._as<Self>();
if constexpr(std::is_member_object_pointer_v<Setter>) {
// specialize for pointer to data member
type_caster<member_type_t<Setter>> caster;
if(caster.load(view[1], true)) {
self.*setter = caster.value;
return vm->None;
}
} else {
// specialize for pointer to member function
type_caster<std::tuple_element_t<1, callable_args_t<Setter>>> caster;
if(caster.load(view[1], true)) {
(self.*setter)(caster.value);
return vm->None;
}
}
} else {
// specialize for function pointer and lambda
using Self = remove_cvref_t<std::tuple_element_t<0, callable_args_t<Setter>>>;
auto& self = handle(view[0])._as<instance>()._as<Self>();
type_caster<std::tuple_element_t<1, callable_args_t<Setter>>> caster;
if(caster.load(view[1], true)) {
setter(self, caster.value);
return vm->None;
}
}
vm->TypeError("Unexpected argument type");
PK_UNREACHABLE();
}
template <typename Getter, typename Setter, typename... Extras>
handle bind_property(const handle& obj, const char* name, Getter&& getter_, Setter&& setter_, const Extras&... extras) {
handle getter = none();
handle setter = none();
using Wrapper = pkpy::PyVar (*)(pkpy::VM*, pkpy::ArgsView);
constexpr auto create = [](Wrapper wrapper, int argc, auto&& f) {
if constexpr(need_host<remove_cvref_t<decltype(f)>>) {
// otherwise, store it in the type_info
void* data = interpreter::take_ownership(std::forward<decltype(f)>(f));
// store the index in the object
return vm->heap.gcnew<pkpy::NativeFunc>(vm->tp_native_func, wrapper, argc, data);
} else {
// if the function is trivially copyable and the size is less than 16 bytes, store it in the object
// directly
return vm->heap.gcnew<pkpy::NativeFunc>(vm->tp_native_func, wrapper, argc, f);
}
};
getter = create(impl::getter_wrapper<std::decay_t<Getter>>, 1, std::forward<Getter>(getter_));
if constexpr(!std::is_same_v<Setter, std::nullptr_t>) {
setter = create(impl::setter_wrapper<std::decay_t<Setter>>, 2, std::forward<Setter>(setter_));
}
handle property = pybind11::property(getter, setter);
setattr(obj, name, property);
return property;
}
} // namespace pybind11::impl

View File

@ -0,0 +1,142 @@
#pragma once
#include "kernel.h"
namespace pybind11 {
struct type_info {
std::string_view name;
std::size_t size;
std::size_t alignment;
void (*destructor)(void*);
const std::type_info* type;
template <typename T>
static type_info& of() {
static_assert(!std::is_reference_v<T> && !std::is_const_v<std::remove_reference_t<T>>,
"T must not be a reference type or const type.");
static type_info info = {
type_name<T>(),
sizeof(T),
alignof(T),
[](void* ptr) {
((T*)ptr)->~T();
operator delete (ptr);
},
&typeid(T),
};
return info;
}
};
// all registered C++ class will be ensured as instance type.
class instance {
public:
// use to record the type information of C++ class.
private:
enum Flag {
None = 0,
Own = 1 << 0, // if the instance is owned by C++ side.
Ref = 1 << 1, // need to mark the parent object.
};
Flag flag;
void* data;
const type_info* type;
pkpy::PyVar parent;
public:
instance() noexcept : flag(Flag::None), data(nullptr), type(nullptr), parent(nullptr) {}
instance(const instance&) = delete;
instance(instance&& other) noexcept : flag(other.flag), data(other.data), type(other.type), parent(other.parent) {
other.flag = Flag::None;
other.data = nullptr;
other.type = nullptr;
other.parent = nullptr;
}
static pkpy::PyVar create(pkpy::Type type, const type_info* info) noexcept {
instance instance;
instance.type = info;
instance.data = operator new (info->size);
instance.flag = Flag::Own;
return vm->heap.gcnew<pybind11::instance>(type, std::move(instance));
}
template <typename T>
static pkpy::PyVar create(T&& value,
pkpy::Type type,
return_value_policy policy = return_value_policy::automatic_reference,
pkpy::PyVar parent = nullptr) noexcept {
using underlying_type = remove_cvref_t<T>;
auto& _value = [&]() -> auto& {
// note that, pybind11 will ignore the const qualifier.
// in fact, try to modify a const value will result in undefined behavior.
if constexpr(std::is_pointer_v<underlying_type>) {
return *reinterpret_cast<underlying_type*>(value);
} else {
return const_cast<underlying_type&>(value);
}
}();
using primary = std::remove_pointer_t<underlying_type>;
instance instance;
instance.type = &type_info::of<primary>();
if(policy == return_value_policy::take_ownership) {
instance.data = &_value;
instance.flag = Flag::Own;
} else if(policy == return_value_policy::copy) {
if constexpr(std::is_copy_constructible_v<primary>) {
instance.data = ::new auto(_value);
instance.flag = Flag::Own;
} else {
std::string msg = "cannot use copy policy on non-copyable type: ";
msg += type_name<primary>();
vm->RuntimeError(msg);
}
} else if(policy == return_value_policy::move) {
if constexpr(std::is_move_constructible_v<primary>) {
instance.data = ::new auto(std::move(_value));
instance.flag = Flag::Own;
} else {
std::string msg = "cannot use move policy on non-moveable type: ";
msg += type_name<primary>();
vm->RuntimeError(msg);
}
} else if(policy == return_value_policy::reference) {
instance.data = &_value;
instance.flag = Flag::None;
} else if(policy == return_value_policy::reference_internal) {
instance.data = &_value;
instance.flag = Flag::Ref;
instance.parent = parent;
}
return vm->heap.gcnew<pybind11::instance>(type, std::move(instance));
}
~instance() {
if(flag & Flag::Own) { type->destructor(data); }
}
template <typename T>
T& _as() noexcept {
return *static_cast<T*>(data);
}
#if PK_VERSION_MAJOR == 2
void _gc_mark(pkpy::VM* vm) const noexcept {
if(parent && (flag & Flag::Ref)) { PK_OBJ_MARK(parent); }
}
#else
void _gc_mark() const noexcept {
if(parent && (flag & Flag::Ref)) { PK_OBJ_MARK(parent); }
}
#endif
};
} // namespace pybind11

View File

@ -0,0 +1,224 @@
#pragma once
#include <vector>
#include <cassert>
#include <pocketpy.h>
#include "type_traits.h"
namespace pybind11::impl {
struct capsule {
void* ptr;
void (*destructor)(void*);
template <typename T>
capsule(T&& value) :
ptr(new auto(std::forward<T>(value))), destructor([](void* ptr) {
delete static_cast<std::decay_t<T>*>(ptr);
}) {}
capsule(void* ptr, void (*destructor)(void*)) : ptr(ptr), destructor(destructor) {}
capsule(const capsule&) = delete;
capsule(capsule&& other) noexcept : ptr(other.ptr), destructor(other.destructor) {
other.ptr = nullptr;
other.destructor = nullptr;
}
~capsule() {
if(ptr != nullptr && destructor != nullptr) destructor(ptr);
}
};
} // namespace pybind11::impl
namespace pybind11 {
class handle;
class object;
class iterator;
class str;
class arg;
struct args_proxy;
struct kwargs_proxy;
inline pkpy::VM* vm = nullptr;
class interpreter {
inline static std::vector<impl::capsule>* _capsules = nullptr;
inline static std::vector<void (*)()>* _init = nullptr;
public:
inline static void initialize(bool enable_os = true) {
if(vm == nullptr) {
vm = new pkpy::VM();
if(_init != nullptr) {
for(auto& fn: *_init)
fn();
}
}
}
inline static void finalize() {
if(_capsules != nullptr) {
delete _capsules;
_capsules = nullptr;
}
if(vm != nullptr) {
delete vm;
vm = nullptr;
}
}
template <typename T>
inline static void* take_ownership(T&& value) {
if(_capsules == nullptr) _capsules = new std::vector<impl::capsule>();
_capsules->emplace_back(std::forward<T>(value));
return _capsules->back().ptr;
}
inline static void register_init(void (*init)()) {
if(_init == nullptr) _init = new std::vector<void (*)()>();
_init->push_back(init);
}
inline static pkpy::PyVar bind_func(pkpy::PyVar scope,
pkpy::StrName name,
int argc,
pkpy::NativeFuncC fn,
pkpy::any any = {},
pkpy::BindType type = pkpy::BindType::DEFAULT) {
#if PK_VERSION_MAJOR == 2
return vm->bind_func(scope.get(), name, argc, fn, any, type);
#else
return vm->bind_func(scope, name, argc, fn, std::move(any), type);
#endif
}
template <typename... Args>
inline static handle vectorcall(const handle& self, const handle& func, const Args&... args);
};
template <typename T>
constexpr inline bool need_host = !(std::is_trivially_copyable_v<T> && (sizeof(T) <= 8));
template <typename T>
decltype(auto) unpack(pkpy::ArgsView view) {
if constexpr(need_host<T>) {
void* data = pkpy::lambda_get_userdata<void*>(view.begin());
return *static_cast<T*>(data);
} else {
return pkpy::lambda_get_userdata<T>(view.begin());
}
}
template <typename policy>
class accessor;
namespace policy {
struct attr;
struct item;
struct tuple;
struct list;
struct dict;
} // namespace policy
using attr_accessor = accessor<policy::attr>;
using item_accessor = accessor<policy::item>;
using tuple_accessor = accessor<policy::tuple>;
using list_accessor = accessor<policy::list>;
using dict_accessor = accessor<policy::dict>;
template <typename T>
T cast(const handle& obj, bool convert = false);
enum class return_value_policy : uint8_t {
/**
* This is the default return value policy, which falls back to the policy
* return_value_policy::take_ownership when the return value is a pointer.
* Otherwise, it uses return_value::move or return_value::copy for rvalue
* and lvalue references, respectively. See below for a description of what
* all of these different policies do.
*/
automatic = 0,
/**
* As above, but use policy return_value_policy::reference when the return
* value is a pointer. This is the default conversion policy for function
* arguments when calling Python functions manually from C++ code (i.e. via
* handle::operator()). You probably won't need to use this.
*/
automatic_reference,
/**
* Reference an existing object (i.e. do not create a new copy) and take
* ownership. Python will call the destructor and delete operator when the
* object's reference count reaches zero. Undefined behavior ensues when
* the C++ side does the same..
*/
take_ownership,
/**
* Create a new copy of the returned object, which will be owned by
* Python. This policy is comparably safe because the lifetimes of the two
* instances are decoupled.
*/
copy,
/**
* Use std::move to move the return value contents into a new instance
* that will be owned by Python. This policy is comparably safe because the
* lifetimes of the two instances (move source and destination) are
* decoupled.
*/
move,
/**
* Reference an existing object, but do not take ownership. The C++ side
* is responsible for managing the object's lifetime and deallocating it
* when it is no longer used. Warning: undefined behavior will ensue when
* the C++ side deletes an object that is still referenced and used by
* Python.
*/
reference,
/**
* This policy only applies to methods and properties. It references the
* object without taking ownership similar to the above
* return_value_policy::reference policy. In contrast to that policy, the
* function or property's implicit this argument (called the parent) is
* considered to be the the owner of the return value (the child).
* pybind11 then couples the lifetime of the parent to the child via a
* reference relationship that ensures that the parent cannot be garbage
* collected while Python is still using the child. More advanced
* variations of this scheme are also possible using combinations of
* return_value_policy::reference and the keep_alive call policy
*/
reference_internal
};
struct empty {};
template <typename... Args>
void print(Args&&... args);
class object;
template <typename T>
constexpr inline bool is_pyobject_v = std::is_base_of_v<object, T>;
#if PK_VERSION_MAJOR == 2
using error_already_set = pkpy::TopLevelException;
#else
class error_already_set : std::exception {
public:
error_already_set() = default;
const char* what() const noexcept override { return "An error occurred while calling a Python function."; }
};
#endif
inline void setattr(const handle& obj, const handle& name, const handle& value);
inline void setattr(const handle& obj, const char* name, const handle& value);
} // namespace pybind11

View File

@ -0,0 +1,48 @@
#pragma once
#include "cpp_function.h"
namespace pybind11 {
class module_ : public object {
public:
using object::object;
static module_ __main__() { return vm->_main; }
static module_ import(const char* name) {
if(name == std::string_view{"__main__"}) {
return vm->_main;
} else {
return vm->py_import(name, false);
}
}
module_ def_submodule(const char* name, const char* doc = nullptr) {
auto package = this->package()._as<pkpy::Str>() + "." + this->name()._as<pkpy::Str>();
auto m = vm->new_module(name, package);
setattr(*this, name, m);
return m;
}
template <typename Fn, typename... Extras>
module_& def(const char* name, Fn&& fn, const Extras... extras) {
impl::bind_function(*this, name, std::forward<Fn>(fn), pkpy::BindType::DEFAULT, extras...);
return *this;
}
};
#define PYBIND11_EMBEDDED_MODULE(name, variable) \
static void _pybind11_register_##name(pybind11::module_& variable); \
namespace pybind11::impl { \
auto _module_##name = [] { \
interpreter::register_init([] { \
pybind11::module_ m = vm->new_module(#name, ""); \
_pybind11_register_##name(m); \
}); \
return 1; \
}(); \
} \
static void _pybind11_register_##name(pybind11::module_& variable)
} // namespace pybind11

View File

@ -0,0 +1,268 @@
#pragma once
#include "instance.h"
namespace pybind11 {
template <typename Derived>
class interface {
private:
pkpy::PyVar ptr() const { return static_cast<const Derived*>(this)->ptr(); }
public:
bool is_none() const {
#if PK_VERSION_MAJOR == 2
return ptr().operator== (vm->None.get());
#else
return ptr() == vm->None;
#endif
}
bool is(const interface& other) const {
#if PK_VERSION_MAJOR == 2
return ptr().operator== (other.ptr().get());
#else
return ptr() == other.ptr();
#endif
}
bool in(const interface& other) const {
return pybind11::cast<bool>(vm->call(vm->py_op("contains"), other.ptr(), ptr()));
}
bool contains(const interface& other) const {
return pybind11::cast<bool>(vm->call(vm->py_op("contains"), ptr(), other.ptr()));
}
protected:
attr_accessor attr(pkpy::StrName key) const;
public:
iterator begin() const;
iterator end() const;
attr_accessor attr(const char* key) const;
attr_accessor attr(const handle& key) const;
attr_accessor doc() const;
item_accessor operator[] (int index) const;
item_accessor operator[] (const char* key) const;
item_accessor operator[] (const handle& key) const;
args_proxy operator* () const;
object operator- () const;
object operator~() const;
template <return_value_policy policy = return_value_policy::automatic, typename... Args>
object operator() (Args&&... args) const;
str package() const;
str name() const;
str repr() const;
public:
template <typename T>
T cast() const {
return pybind11::cast<T>(ptr());
}
// this is a internal function, use to interact with pocketpy python
template <typename T>
decltype(auto) _as() const {
static_assert(!std::is_reference_v<T>, "T must not be a reference type.");
#if PK_VERSION_MAJOR == 2
if constexpr(pkpy::is_sso_v<T>) {
return pkpy::_py_cast<T>(vm, ptr());
} else {
return ptr().template obj_get<T>();
}
#else
return (((pkpy::Py_<T>*)ptr())->_value);
#endif
}
};
/// a lightweight wrapper for python objects
class handle : public interface<handle> {
protected:
mutable pkpy::PyVar m_ptr = nullptr;
public:
handle() = default;
handle(const handle& h) = default;
handle& operator= (const handle& other) = default;
handle(std::nullptr_t) = delete;
handle(pkpy::PyVar ptr) : m_ptr(ptr) {}
#if PK_VERSION_MAJOR == 2
handle(pkpy::PyObject* ptr) : m_ptr(ptr) {}
#endif
pkpy::PyVar ptr() const { return m_ptr; }
explicit operator bool () const { return m_ptr != nullptr; }
};
// a helper class to visit type
struct type_visitor {
template <typename T>
constexpr static bool is_type = std::is_same_v<pkpy::Type, std::decay_t<decltype(T::type_or_check())>>;
template <typename T>
static pkpy::Type type() {
if constexpr(is_pyobject_v<T>) {
if constexpr(is_type<T>) {
// for some type, they have according type in python, e.g. bool, int, float
// so just return the according type
return T::type_or_check();
} else {
// for other type, they don't have according type in python, like iterable, iterator
static_assert(dependent_false<T>, "type_or_check not defined");
}
} else {
#if PK_VERSION_MAJOR == 2
// for C++ type, lookup the type in the type map
auto type = vm->_cxx_typeid_map.try_get(typeid(T));
// if found, return the type
if(type) return *type;
#else
auto result = vm->_cxx_typeid_map.find(typeid(T));
if(result != vm->_cxx_typeid_map.end()) { return result->second; }
#endif
// if not found, raise error
std::string msg = "can not c++ instance cast to object, type: {";
msg += type_name<T>();
msg += "} is not registered.";
vm->TypeError(msg);
PK_UNREACHABLE();
}
}
template <typename T, typename Base = void>
static handle create(const handle& scope, const char* name, bool is_builtin = false) {
pkpy::Type type = vm->tp_object;
#if PK_VERSION_MAJOR == 2
pkpy::PyTypeInfo::Vt vt = pkpy::PyTypeInfo::Vt::get<instance>();
if(is_builtin) { vt = pkpy::PyTypeInfo::Vt::get<T>(); }
if constexpr(!std::is_same_v<Base, void>) {
type = type_visitor::type<Base>();
vt = {};
}
handle result = vm->new_type_object(scope.ptr().get(), name, type, true, vt);
if(!is_builtin) { vm->_cxx_typeid_map.insert(typeid(T), result._as<pkpy::Type>()); }
#else
if constexpr(!std::is_same_v<Base, void>) { type = type_visitor::type<Base>(); }
handle result = vm->new_type_object(scope.ptr(), name, type, true);
if(!is_builtin) (vm->_cxx_typeid_map.try_emplace(typeid(T), result._as<pkpy::Type>()));
#endif
// set __module__
setattr(scope, name, result);
return result;
}
template <typename T>
static bool check(const handle& obj) {
if constexpr(is_pyobject_v<T>) {
if constexpr(is_type<T>) {
return vm->isinstance(obj.ptr(), T::type_or_check());
} else {
// some type, like iterable, iterator, they don't have according type in python
// but they have a function to check the type, then just call the function
return T::type_or_check(obj);
}
} else {
return vm->isinstance(obj.ptr(), type<T>());
}
}
};
// undef in pybind11.h
#define PYBIND11_TYPE_IMPLEMENT(parent, name, tp) \
\
private: \
using underlying_type = name; \
\
inline static auto type_or_check = [] { \
return tp; \
}; \
\
decltype(auto) self() const { return _as<underlying_type>(); } \
\
template <typename... Args> \
static handle create(Args&&... args) { \
if constexpr(pkpy::is_sso_v<underlying_type>) { \
return pkpy::py_var(vm, std::forward<Args>(args)...); \
} else { \
return vm->heap.gcnew<underlying_type>(type_or_check(), std::forward<Args>(args)...); \
} \
} \
\
friend type_visitor; \
using parent::parent;
/*=============================================================================//
// pkpy does not use reference counts, so object is just fot API compatibility //
//=============================================================================*/
class object : public handle {
PYBIND11_TYPE_IMPLEMENT(handle, empty, vm->tp_object);
public:
object(const handle& h) : handle(h) {
// object is must not null ptr
assert(h.ptr() != nullptr);
}
};
// undef after usage
#define PYBIND11_BINARY_OPERATOR(OP, NAME) \
inline object operator OP (const handle& lhs, const handle& rhs) { return handle(vm->py_op(NAME))(lhs, rhs); }
#define PYBIND11_INPLACE_OPERATOR(OP, NAME) \
inline object operator OP (handle& lhs, const handle& rhs) { \
handle result = handle(vm->py_op(NAME))(lhs, rhs); \
return lhs = result; \
}
#define PYBIND11_BINARY_LOGIC_OPERATOR(OP, NAME) \
inline bool operator OP (const handle& lhs, const handle& rhs) { \
return pybind11::cast<bool>(handle(vm->py_op(NAME))(lhs, rhs)); \
}
PYBIND11_BINARY_OPERATOR(+, "add");
PYBIND11_BINARY_OPERATOR(-, "sub");
PYBIND11_BINARY_OPERATOR(*, "mul");
PYBIND11_BINARY_OPERATOR(/, "truediv");
PYBIND11_BINARY_OPERATOR(%, "mod");
PYBIND11_BINARY_OPERATOR(|, "or_");
PYBIND11_BINARY_OPERATOR(&, "and_");
PYBIND11_BINARY_OPERATOR(^, "xor");
PYBIND11_BINARY_OPERATOR(<<, "lshift");
PYBIND11_BINARY_OPERATOR(>>, "rshift");
PYBIND11_INPLACE_OPERATOR(+=, "iadd");
PYBIND11_INPLACE_OPERATOR(-=, "isub");
PYBIND11_INPLACE_OPERATOR(*=, "imul");
PYBIND11_INPLACE_OPERATOR(/=, "itruediv");
PYBIND11_INPLACE_OPERATOR(%=, "imod");
PYBIND11_INPLACE_OPERATOR(|=, "ior");
PYBIND11_INPLACE_OPERATOR(&=, "iand");
PYBIND11_INPLACE_OPERATOR(^=, "ixor");
PYBIND11_INPLACE_OPERATOR(<<=, "ilshift");
PYBIND11_INPLACE_OPERATOR(>>=, "irshift");
PYBIND11_BINARY_LOGIC_OPERATOR(==, "eq");
PYBIND11_BINARY_LOGIC_OPERATOR(!=, "ne");
PYBIND11_BINARY_LOGIC_OPERATOR(<, "lt");
PYBIND11_BINARY_LOGIC_OPERATOR(>, "gt");
PYBIND11_BINARY_LOGIC_OPERATOR(<=, "le");
PYBIND11_BINARY_LOGIC_OPERATOR(>=, "ge");
#undef PYBIND11_BINARY_OPERATOR
#undef PYBIND11_INPLACE_OPERATOR
#undef PYBIND11_BINARY_LOGIC_OPERATOR
}; // namespace pybind11

View File

@ -0,0 +1,170 @@
#pragma once
#include <tuple>
#include <string_view>
#include <type_traits>
namespace pybind11 {
template <typename T>
constexpr bool dependent_false = false;
template <typename T, typename Tuple>
struct tuple_push_front;
template <typename T, typename... Ts>
struct tuple_push_front<T, std::tuple<Ts...>> {
using type = std::tuple<T, Ts...>;
};
template <typename T, typename Tuple>
using tuple_push_front_t = typename tuple_push_front<T, Tuple>::type;
// traits for function types
template <typename Fn>
struct function_traits {
static_assert(dependent_false<Fn>, "unsupported function type");
};
#define PYBIND11_FUNCTION_TRAITS_SPECIALIZE(qualifiers) \
template <typename R, typename... Args> \
struct function_traits<R(Args...) qualifiers> { \
using return_type = R; \
using args_type = std::tuple<Args...>; \
constexpr static std::size_t args_count = sizeof...(Args); \
};
PYBIND11_FUNCTION_TRAITS_SPECIALIZE()
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(&)
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(const)
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(const&)
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(noexcept)
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(& noexcept)
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(const noexcept)
PYBIND11_FUNCTION_TRAITS_SPECIALIZE(const& noexcept)
#undef PYBIND11_FUNCTION_TRAITS_SPECIALIZE
template <typename T>
using function_return_t = typename function_traits<T>::return_type;
template <typename T>
using function_args_t = typename function_traits<T>::args_type;
template <typename T>
constexpr std::size_t function_args_count = function_traits<T>::args_count;
// traits for member pointers
template <typename T>
struct member_traits;
template <typename M, typename C>
struct member_traits<M C::*> {
using member_type = M;
using class_type = C;
};
template <typename T>
using member_type_t = typename member_traits<T>::member_type;
template <typename T>
using class_type_t = typename member_traits<T>::class_type;
// some traits for distinguishing between function pointers, member function pointers and
// functors
using std::is_member_function_pointer_v;
using std::is_member_object_pointer_v;
template <typename T>
constexpr inline bool is_function_pointer_v = std::is_function_v<std::remove_pointer_t<T>>;
template <typename T, typename U = void>
constexpr bool is_functor_v = false;
template <typename T>
constexpr inline bool is_functor_v<T, std::void_t<decltype(&T::operator())>> = true;
template <typename T, typename SFINAE = void>
struct callable_traits;
template <typename T>
struct callable_traits<T, std::enable_if_t<is_member_function_pointer_v<T>>> {
using args_type = tuple_push_front_t<class_type_t<T>&, function_args_t<member_type_t<T>>>;
using return_type = function_return_t<member_type_t<T>>;
};
template <typename T>
struct callable_traits<T, std::enable_if_t<is_function_pointer_v<T>>> {
using args_type = function_args_t<std::remove_pointer_t<T>>;
using return_type = function_return_t<std::remove_pointer_t<T>>;
};
template <typename T>
struct callable_traits<T, std::enable_if_t<is_functor_v<T>>> {
using args_type = function_args_t<member_type_t<decltype(&T::operator())>>;
using return_type = function_return_t<member_type_t<decltype(&T::operator())>>;
};
template <typename Callable>
using callable_args_t = typename callable_traits<Callable>::args_type;
template <typename Callable>
using callable_return_t = typename callable_traits<Callable>::return_type;
template <typename Callable>
constexpr std::size_t callable_args_count_v = std::tuple_size_v<callable_args_t<Callable>>;
template <typename T>
struct type_identity {
using type = T;
};
template <typename T>
using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<T>>;
template <typename T, typename... Ts>
constexpr inline std::size_t types_count_v = (std::is_same_v<T, Ts> + ...);
template <typename T>
constexpr inline std::size_t types_count_v<T> = 0;
template <typename T, typename... Ts>
constexpr inline int type_index_v = [] {
bool arr[sizeof...(Ts) + 1] = {std::is_same_v<T, Ts>...};
for(int i = 0; i < sizeof...(Ts); ++i) {
if(arr[i]) return i;
}
return -1;
}();
static_assert(types_count_v<int, int, float, int> == 2);
static_assert(types_count_v<int, float, double> == 0);
static_assert(type_index_v<int, int, float, int> == 0);
static_assert(type_index_v<float, int, float, int> == 1);
static_assert(type_index_v<int, float, double> == -1);
template <typename T>
constexpr inline bool is_multiple_pointer_v = std::is_pointer_v<T> && is_multiple_pointer_v<std::remove_pointer_t<T>>;
template <typename T>
using pybind11_decay_t = std::decay_t<std::remove_pointer_t<std::decay_t<T>>>;
template <typename T>
constexpr auto type_name() {
#if __GNUC__ || __clang__
std::string_view name = __PRETTY_FUNCTION__;
std::size_t start = name.find('=') + 2;
std::size_t end = name.size() - 1;
return std::string_view{name.data() + start, end - start};
#elif _MSC_VER
std::string_view name = __FUNCSIG__;
std::size_t start = name.find('<') + 1;
std::size_t end = name.rfind(">(");
name = std::string_view{name.data() + start, end - start};
start = name.find(' ');
return start == std::string_view::npos ? name : std::string_view{name.data() + start + 1, name.size() - start - 1};
#else
static_assert(false, "Unsupported compiler");
#endif
}
} // namespace pybind11

View File

@ -0,0 +1,395 @@
#pragma once
#include "object.h"
namespace pybind11 {
template <typename T>
handle cast(T&& value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = {});
struct arg {
const char* name;
handle default_;
arg(const char* name) : name(name), default_() {}
template <typename T>
arg& operator= (T&& value) {
default_ = cast(std::forward<T>(value));
return *this;
}
};
// undef in pybind11.h
#define PYBIND11_REGISTER_INIT(func) \
static inline int _register = [] { \
interpreter::register_init(func); \
return 0; \
}();
class none : public object {
#if PK_VERSION_MAJOR == 2
PYBIND11_TYPE_IMPLEMENT(object, empty, vm->tp_none_type);
#else
PYBIND11_TYPE_IMPLEMENT(object, empty, [](const handle& obj) {
return obj.is_none();
});
#endif
public:
none() : object(vm->None) {}
};
/// corresponding to type in Python
class type : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Type, vm->tp_type);
public:
template <typename T>
static handle handle_of() {
return type_visitor::type<T>();
}
static type of(const handle& obj) { return type(vm->_t(obj.ptr())); }
};
/// corresponding to bool in Python
class bool_ : public object {
PYBIND11_TYPE_IMPLEMENT(object, bool, vm->tp_bool);
public:
bool_(bool value) : object(create(value)) {}
operator bool () const { return self(); }
};
/// corresponding to int in Python
class int_ : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::i64, vm->tp_int);
public:
int_(int64_t value) : object(create(value)) {}
operator int64_t () const { return self(); }
};
/// corresponding to float in Python
class float_ : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::f64, vm->tp_float);
public:
float_(double value) : object(create(value)) {}
operator double () const { return self(); }
};
class iterable : public object {
PYBIND11_TYPE_IMPLEMENT(object, empty, [](const handle& obj) {
return vm->getattr(obj.ptr(), pkpy::__iter__, false) != nullptr;
});
};
class iterator : public object {
PYBIND11_TYPE_IMPLEMENT(object, empty, [](const handle& obj) {
return vm->getattr(obj.ptr(), pkpy::__next__, false) != nullptr &&
vm->getattr(obj.ptr(), pkpy::__iter__, false) != nullptr;
});
handle m_value;
iterator(pkpy::PyVar n, pkpy::PyVar s) : object(n), m_value(s) {}
public:
iterator(const handle& obj) : object(obj) { m_value = vm->py_next(obj.ptr()); }
iterator operator++ () {
m_value = vm->py_next(m_ptr);
return *this;
}
iterator operator++ (int) {
m_value = vm->py_next(m_ptr);
return *this;
}
const handle& operator* () const { return m_value; }
friend bool operator== (const iterator& lhs, const iterator& rhs) { return lhs.m_value.is(rhs.m_value); }
friend bool operator!= (const iterator& lhs, const iterator& rhs) { return !(lhs == rhs); }
static iterator sentinel() { return iterator(vm->None, vm->StopIteration); }
};
class str : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Str, vm->tp_str);
public:
str(const char* c, int len) : object(create(c, len)) {};
str(const char* c = "") : str(c, strlen(c)) {}
str(const std::string& s) : str(s.data(), s.size()) {}
str(std::string_view sv) : str(sv.data(), sv.size()) {}
// explicit str(const bytes& b);
explicit str(handle h);
operator std::string_view () const { return self().sv(); }
template <typename... Args>
str format(Args&&... args) const;
};
// class bytes : public object {
// public:
// using object::object;
// };
// class bytearray : public object {
// public:
// using object::object;
// };
class tuple : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Tuple, vm->tp_tuple);
public:
tuple(int n) : object(create(n)) {}
template <typename... Args, std::enable_if_t<(sizeof...(Args) > 1)>* = nullptr>
tuple(Args&&... args) : object(create(sizeof...(Args))) {
int index = 0;
((self()[index++] = pybind11::cast(std::forward<Args>(args)).ptr()), ...);
}
int size() const { return self().size(); }
bool empty() const { return size() == 0; }
tuple_accessor operator[] (int i) const;
};
class list : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::List, vm->tp_list)
public:
list() : object(create(0)) {}
list(int n) : object(create(n)) {}
template <typename... Args, std::enable_if_t<(sizeof...(Args) > 1)>* = nullptr>
list(Args&&... args) : object(create(sizeof...(Args))) {
int index = 0;
((self()[index++] = pybind11::cast(std::forward<Args>(args)).ptr()), ...);
}
int size() const { return self().size(); }
bool empty() const { return size() == 0; }
void clear() { self().clear(); }
list_accessor operator[] (int i) const;
void append(const handle& obj) { self().push_back(obj.ptr()); }
void extend(const handle& iterable) {
for(auto& item: iterable) {
append(item);
}
}
void insert(int index, const handle& obj) {
#if PK_VERSION_MAJOR == 2
const auto pos = self().begin() + index;
self().insert(pos, obj.ptr());
#else
self().insert(index, obj.ptr());
#endif
}
};
class slice : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Slice, vm->tp_slice);
public:
};
// class set : public object {
// public:
// using object::object;
// // set() : object(vm->new_object<pkpy::Se>(pkpy::VM::tp_set), true) {}
// };
//
class dict : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Dict, vm->tp_dict);
public:
#if PK_VERSION_MAJOR == 2
dict() : object(create()) {}
template <typename... Args, typename = std::enable_if_t<(std::is_same_v<remove_cvref_t<Args>, arg> && ...)>>
dict(Args&&... args) : object(create()) {
auto foreach_ = [&](pybind11::arg& arg) {
setitem(str(arg.name), arg.default_);
};
(foreach_(args), ...);
}
void setitem(const handle& key, const handle& value) { self().set(vm, key.ptr(), value.ptr()); }
handle getitem(const handle& key) const { return self().try_get(vm, key.ptr()); }
struct iterator {
pkpy_DictIter iter;
std::pair<handle, handle> value;
iterator operator++ () {
bool is_ended = pkpy_DictIter__next(&iter, (PyVar*)&value.first, (PyVar*)&value.second);
if(!is_ended) {
iter._dict = nullptr;
iter._index = -1;
}
return *this;
}
std::pair<handle, handle> operator* () const { return value; }
bool operator== (const iterator& other) const {
return iter._dict == other.iter._dict && iter._index == other.iter._index;
}
bool operator!= (const iterator& other) const { return !(*this == other); }
};
iterator begin() const {
iterator iter{self().iter(), {}};
++iter;
return iter;
}
iterator end() const { return {nullptr, -1}; }
#else
dict() : object(create(vm)) {}
template <typename... Args, typename = std::enable_if_t<(std::is_same_v<remove_cvref_t<Args>, arg> && ...)>>
dict(Args&&... args) : object(create(vm)) {
auto foreach_ = [&](pybind11::arg& arg) {
setitem(str(arg.name), arg.default_);
};
(foreach_(args), ...);
}
void setitem(const handle& key, const handle& value) { self().set(key.ptr(), value.ptr()); }
handle getitem(const handle& key) const { return self().try_get(key.ptr()); }
struct iterator {
pkpy::Dict::Item* items;
pkpy::Dict::ItemNode* nodes;
int index;
iterator operator++ () {
index = nodes[index].next;
if(index == -1) {
items = nullptr;
nodes = nullptr;
}
return *this;
}
std::pair<handle, handle> operator* () const { return {items[index].first, items[index].second}; }
bool operator== (const iterator& other) const {
return items == other.items && nodes == other.nodes && index == other.index;
}
bool operator!= (const iterator& other) const { return !(*this == other); }
};
iterator begin() const {
auto index = self()._head_idx;
if(index == -1) {
return end();
} else {
return {self()._items, self()._nodes, index};
}
}
iterator end() const { return {nullptr, nullptr, -1}; }
template <typename Key>
bool contains(Key&& key) const {
return self().contains(vm, pybind11::cast(std::forward<Key>(key)).ptr());
}
#endif
int size() const { return self().size(); }
bool empty() const { return size() == 0; }
void clear() { self().clear(); }
dict_accessor operator[] (int index) const;
dict_accessor operator[] (std::string_view) const;
dict_accessor operator[] (const handle& key) const;
};
class function : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Function, vm->tp_function);
};
//
// class buffer : public object {
// public:
// using object::object;
//};
//
// class memory_view : public object {
// public:
// using object::object;
//};
//
class capsule : public object {
PYBIND11_REGISTER_INIT([] {
type_visitor::create<impl::capsule>(vm->builtins, "capsule", true);
});
PYBIND11_TYPE_IMPLEMENT(object, impl::capsule, handle(vm->builtins->attr("capsule"))._as<pkpy::Type>());
public:
template <typename T>
capsule(T&& value) : object(create(std::forward<T>(value))) {}
template <typename T>
T& cast() const {
return *static_cast<T*>(self().ptr);
}
};
class property : public object {
PYBIND11_TYPE_IMPLEMENT(object, pkpy::Property, vm->tp_property);
public:
#if PK_VERSION_MAJOR == 2
property(handle getter, handle setter) : object(create(getter.ptr(), setter.ptr())) {}
#else
property(handle getter, handle setter) : object(create(pkpy::Property{getter.ptr(), setter.ptr()})) {}
#endif
handle getter() const { return self().getter; }
handle setter() const { return self().setter; }
};
class args : public tuple {
PYBIND11_TYPE_IMPLEMENT(tuple, struct empty, vm->tp_tuple);
};
class kwargs : public dict {
PYBIND11_TYPE_IMPLEMENT(dict, struct empty, vm->tp_dict);
};
} // namespace pybind11

View File

@ -0,0 +1,201 @@
#pragma once
#include "pybind11.h"
namespace pybind11::impl {
enum op_id : int {
op_add,
op_sub,
op_mul,
op_div,
op_mod,
op_divmod,
op_pow,
op_lshift,
op_rshift,
op_and,
op_xor,
op_or,
op_neg,
op_pos,
op_abs,
op_invert,
op_int,
op_long,
op_float,
op_str,
op_cmp,
op_gt,
op_ge,
op_lt,
op_le,
op_eq,
op_ne,
op_iadd,
op_isub,
op_imul,
op_idiv,
op_imod,
op_ilshift,
op_irshift,
op_iand,
op_ixor,
op_ior,
op_complex,
op_bool,
op_nonzero,
op_repr,
op_truediv,
op_itruediv,
op_hash
};
enum op_type : int {
op_l, /* base type on left */
op_r, /* base type on right */
op_u /* unary operator */
};
struct self_t {};
const static self_t self = self_t();
/// Type for an unused type slot
struct undefined_t {};
/// Don't warn about an unused variable
inline self_t __self() { return self; }
/// base template of operator implementations
template <op_id, op_type, typename B, typename L, typename R>
struct op_impl {};
/// Operator implementation generator
template <op_id id, op_type ot, typename L, typename R>
struct op_ {
constexpr static bool op_enable_if_hook = true;
template <typename Class, typename... Extra>
void execute(Class& cl, const Extra&... extra) const {
using Base = typename Class::underlying_type;
using L_type = std::conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = std::conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute, extra...);
}
template <typename Class, typename... Extra>
void execute_cast(Class& cl, const Extra&... extra) const {
using Base = typename Class::type;
using L_type = std::conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = std::conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute_cast, extra...);
}
};
#define PYBIND11_BINARY_OPERATOR(id, rid, op, expr) \
template <typename B, typename L, typename R> \
struct op_impl<op_##id, op_l, B, L, R> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(const L& l, const R& r) -> decltype(expr) { return (expr); } \
static B execute_cast(const L& l, const R& r) { return B(expr); } \
}; \
\
template <typename B, typename L, typename R> \
struct op_impl<op_##id, op_r, B, L, R> { \
static char const* name() { return "__" #rid "__"; } \
static auto execute(const R& r, const L& l) -> decltype(expr) { return (expr); } \
static B execute_cast(const R& r, const L& l) { return B(expr); } \
}; \
\
inline op_<op_##id, op_l, self_t, self_t> op(const self_t&, const self_t&) { \
return op_<op_##id, op_l, self_t, self_t>(); \
} \
\
template <typename T> \
op_<op_##id, op_l, self_t, T> op(const self_t&, const T&) { \
return op_<op_##id, op_l, self_t, T>(); \
} \
\
template <typename T> \
op_<op_##id, op_r, T, self_t> op(const T&, const self_t&) { \
return op_<op_##id, op_r, T, self_t>(); \
}
#define PYBIND11_INPLACE_OPERATOR(id, op, expr) \
template <typename B, typename L, typename R> \
struct op_impl<op_##id, op_l, B, L, R> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(L& l, const R& r) -> decltype(expr) { return expr; } \
static B execute_cast(L& l, const R& r) { return B(expr); } \
}; \
\
template <typename T> \
op_<op_##id, op_l, self_t, T> op(const self_t&, const T&) { \
return op_<op_##id, op_l, self_t, T>(); \
}
#define PYBIND11_UNARY_OPERATOR(id, op, expr) \
template <typename B, typename L> \
struct op_impl<op_##id, op_u, B, L, undefined_t> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(const L& l) -> decltype(expr) { return expr; } \
static B execute_cast(const L& l) { return B(expr); } \
}; \
\
inline op_<op_##id, op_u, self_t, undefined_t> op(const self_t&) { \
return op_<op_##id, op_u, self_t, undefined_t>(); \
}
PYBIND11_BINARY_OPERATOR(sub, rsub, operator-, l - r)
PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r)
PYBIND11_BINARY_OPERATOR(mul, rmul, operator*, l* r)
PYBIND11_BINARY_OPERATOR(truediv, rtruediv, operator/, l / r)
PYBIND11_BINARY_OPERATOR(mod, rmod, operator%, l % r)
PYBIND11_BINARY_OPERATOR(lshift, rlshift, operator<<, l << r)
PYBIND11_BINARY_OPERATOR(rshift, rrshift, operator>>, l >> r)
PYBIND11_BINARY_OPERATOR(and, rand, operator&, l& r)
PYBIND11_BINARY_OPERATOR(xor, rxor, operator^, l ^ r)
PYBIND11_BINARY_OPERATOR(eq, eq, operator==, l == r)
PYBIND11_BINARY_OPERATOR(ne, ne, operator!=, l != r)
PYBIND11_BINARY_OPERATOR(or, ror, operator|, l | r)
PYBIND11_BINARY_OPERATOR(gt, lt, operator>, l > r)
PYBIND11_BINARY_OPERATOR(ge, le, operator>=, l >= r)
PYBIND11_BINARY_OPERATOR(lt, gt, operator<, l < r)
PYBIND11_BINARY_OPERATOR(le, ge, operator<=, l <= r)
// PYBIND11_BINARY_OPERATOR(pow, rpow, pow, std::pow(l, r))
PYBIND11_INPLACE_OPERATOR(iadd, operator+=, l += r)
PYBIND11_INPLACE_OPERATOR(isub, operator-=, l -= r)
PYBIND11_INPLACE_OPERATOR(imul, operator*=, l *= r)
PYBIND11_INPLACE_OPERATOR(itruediv, operator/=, l /= r)
PYBIND11_INPLACE_OPERATOR(imod, operator%=, l %= r)
PYBIND11_INPLACE_OPERATOR(ilshift, operator<<=, l <<= r)
PYBIND11_INPLACE_OPERATOR(irshift, operator>>=, l >>= r)
PYBIND11_INPLACE_OPERATOR(iand, operator&=, l &= r)
PYBIND11_INPLACE_OPERATOR(ixor, operator^=, l ^= r)
PYBIND11_INPLACE_OPERATOR(ior, operator|=, l |= r)
PYBIND11_UNARY_OPERATOR(neg, operator-, -l)
PYBIND11_UNARY_OPERATOR(pos, operator+, +l)
// WARNING: This usage of `abs` should only be done for existing STL overloads.
// Adding overloads directly in to the `std::` namespace is advised against:
// https://en.cppreference.com/w/cpp/language/extending_std
// PYBIND11_UNARY_OPERATOR(abs, abs, std::abs(l))
// PYBIND11_UNARY_OPERATOR(hash, hash, std::hash<L>()(l))
// PYBIND11_UNARY_OPERATOR(invert, operator~, (~l))
// PYBIND11_UNARY_OPERATOR(bool, operator!, !!l)
// PYBIND11_UNARY_OPERATOR(int, int_, (int)l)
// PYBIND11_UNARY_OPERATOR(float, float_, (double)l)
#undef PYBIND11_BINARY_OPERATOR
#undef PYBIND11_INPLACE_OPERATOR
#undef PYBIND11_UNARY_OPERATOR
} // namespace pybind11::impl
namespace pybind11 {
using impl::self;
}

View File

@ -0,0 +1,21 @@
#pragma once
#include "internal/class.h"
namespace pybind11 {
namespace literals {
inline arg operator""_a (const char* c, size_t) { return arg(c); }
} // namespace literals
struct scoped_interpreter {
scoped_interpreter() { interpreter::initialize(); }
~scoped_interpreter() { interpreter::finalize(); }
};
} // namespace pybind11
// namespace pybind11
#undef PYBIND11_TYPE_IMPLEMENT
#undef PYBIND11_REGISTER_INIT

144
include/pybind11/stl.h Normal file
View File

@ -0,0 +1,144 @@
#include "pybind11.h"
#include <array>
#include <vector>
#include <list>
#include <deque>
#include <forward_list>
#include <map>
#include <unordered_map>
namespace pybind11 {
template <typename T, std::size_t N>
struct type_caster<std::array<T, N>> {
struct wrapper {
std::array<T, N> container = {};
operator std::array<T, N>&& () { return std::move(container); }
};
wrapper value;
bool load(const handle& src, bool convert) {
if(!isinstance<list>(src)) { return false; }
auto list = src.cast<pybind11::list>();
if(list.size() != N) { return false; }
for(std::size_t i = 0; i < N; ++i) {
type_caster<T> caster;
if(!caster.load(list[i], convert)) { return false; }
value.container[i] = caster.value;
}
return true;
}
template <typename U>
static handle cast(U&& src, return_value_policy policy, handle parent) {
auto list = pybind11::list();
for(auto& item: src) {
list.append(pybind11::cast(item, policy, parent));
}
return list;
}
};
template <typename T>
constexpr bool is_py_list_like_v = false;
template <typename T, typename Allocator>
constexpr bool is_py_list_like_v<std::vector<T, Allocator>> = true;
template <typename T, typename Allocator>
constexpr bool is_py_list_like_v<std::list<T, Allocator>> = true;
template <typename T, typename Allocator>
constexpr bool is_py_list_like_v<std::deque<T, Allocator>> = true;
template <typename T>
struct type_caster<T, std::enable_if_t<is_py_list_like_v<T>>> {
struct wrapper {
T container;
operator T&& () { return std::move(container); }
};
wrapper value;
bool load(const handle& src, bool convert) {
if(!isinstance<list>(src)) { return false; }
auto list = src.cast<pybind11::list>();
for(auto item: list) {
type_caster<typename T::value_type> caster;
if(!caster.load(item, convert)) { return false; }
value.container.push_back(caster.value);
}
return true;
}
template <typename U>
static handle cast(U&& src, return_value_policy policy, handle parent) {
auto list = pybind11::list();
for(auto& item: src) {
list.append(pybind11::cast(item, policy, parent));
}
return list;
}
};
template <typename T>
constexpr bool is_py_map_like_v = false;
template <typename Key, typename T, typename Compare, typename Allocator>
constexpr bool is_py_map_like_v<std::map<Key, T, Compare, Allocator>> = true;
template <typename Key, typename T, typename Hash, typename KeyEqual, typename Allocator>
constexpr bool is_py_map_like_v<std::unordered_map<Key, T, Hash, KeyEqual, Allocator>> = true;
template <typename T>
struct type_caster<T, std::enable_if_t<is_py_map_like_v<T>>> {
struct wrapper {
T container;
operator T&& () { return std::move(container); }
};
wrapper value;
bool load(const handle& src, bool convert) {
if(!isinstance<dict>(src)) { return false; }
auto dict = src.cast<pybind11::dict>();
for(auto item: dict) {
type_caster<typename T::key_type> key_caster;
if(!key_caster.load(item.first, convert)) { return false; }
type_caster<typename T::mapped_type> value_caster;
if(!value_caster.load(item.second, convert)) { return false; }
value.container.try_emplace(key_caster.value, value_caster.value);
}
return true;
}
template <typename U>
static handle cast(U&& src, return_value_policy policy, handle parent) {
auto dict = pybind11::dict();
for(auto& [key, value]: src) {
dict[pybind11::cast(key, policy, parent)] = pybind11::cast(value, policy, parent);
}
return dict;
}
};
} // namespace pybind11

View File

@ -518,10 +518,11 @@ i64 VM::py_hash(PyVar obj){
}
PyVar VM::__py_exec_internal(const CodeObject_& code, PyVar globals, PyVar locals){
Frame* frame = &vm->callstack.top();
Frame* frame = nullptr;
if(!callstack.empty()) frame = &callstack.top();
// fast path
if(globals == vm->None && locals == vm->None){
if(frame && globals == vm->None && locals == vm->None){
return vm->_exec(code.get(), frame->_module, frame->_callable, frame->_locals);
}
@ -534,7 +535,7 @@ PyVar VM::__py_exec_internal(const CodeObject_& code, PyVar globals, PyVar local
Dict* locals_dict = nullptr;
if(globals == vm->None){
globals_obj = frame->_module;
globals_obj = frame ? frame->_module : _main;
}else{
if(is_type(globals, VM::tp_mappingproxy)){
globals_obj = PK_OBJ_GET(MappingProxy, globals).obj;