#pragma once #include "frame.h" #include "error.h" #define DEF_NATIVE(type, ctype, ptype) \ inline ctype& Py##type##_AS_C(const PyVar& obj) { \ check_type(obj, ptype); \ return OBJ_GET(ctype, obj); \ } \ inline PyVar Py##type(const ctype& value) { return new_object(ptype, value);} \ inline PyVar Py##type(ctype&& value) { return new_object(ptype, std::move(value));} class Generator; class VM { public: std::stack< std::unique_ptr > callstack; PyVar _py_op_call; PyVar _py_op_yield; std::vector _all_types; // PyVar _ascii_str_pool[128]; PyVar run_frame(Frame* frame); pkpy::NameDict _types; pkpy::NameDict _modules; // loaded modules emhash8::HashMap _lazy_modules; // lazy loaded modules PyVar None, True, False, Ellipsis; bool use_stdio; std::ostream* _stdout; std::ostream* _stderr; PyVar builtins; // builtins module PyVar _main; // __main__ module int recursionlimit = 1000; VM(bool use_stdio){ this->use_stdio = use_stdio; if(use_stdio){ this->_stdout = &std::cout; this->_stderr = &std::cerr; }else{ this->_stdout = new StrStream(); this->_stderr = new StrStream(); } init_builtin_types(); // for(int i=0; i<128; i++) _ascii_str_pool[i] = new_object(tp_str, std::string(1, (char)i)); } PyVar asStr(const PyVar& obj){ PyVarOrNull f = getattr(obj, __str__, false); if(f != nullptr) return call(f); return asRepr(obj); } inline Frame* top_frame() const { if(callstack.empty()) UNREACHABLE(); return callstack.top().get(); } PyVar asRepr(const PyVar& obj){ if(is_type(obj, tp_type)) return PyStr("attr(__name__)) + "'>"); return call(obj, __repr__); } const PyVar& asBool(const PyVar& obj){ if(is_type(obj, tp_bool)) return obj; if(obj == None) return False; if(is_type(obj, tp_int)) return PyBool(PyInt_AS_C(obj) != 0); if(is_type(obj, tp_float)) return PyBool(PyFloat_AS_C(obj) != 0.0); PyVarOrNull len_fn = getattr(obj, __len__, false); if(len_fn != nullptr){ PyVar ret = call(len_fn); return PyBool(PyInt_AS_C(ret) > 0); } return True; } PyVar asIter(const PyVar& obj){ if(is_type(obj, tp_native_iterator)) return obj; PyVarOrNull iter_f = getattr(obj, __iter__, false); if(iter_f != nullptr) return call(iter_f); TypeError(OBJ_NAME(_t(obj)).escape(true) + " object is not iterable"); return nullptr; } PyVar asList(const PyVar& iterable){ if(is_type(iterable, tp_list)) return iterable; return call(_t(tp_list), pkpy::one_arg(iterable)); } PyVar fast_call(const Str& name, pkpy::Args&& args){ PyObject* cls = _t(args[0]).get(); while(cls != None.get()) { PyVar* val = cls->attr().try_get(name); if(val != nullptr) return call(*val, std::move(args)); cls = cls->attr(__base__).get(); } AttributeError(args[0], name); return nullptr; } inline PyVar call(const PyVar& _callable){ return call(_callable, pkpy::no_arg(), pkpy::no_arg(), false); } template inline std::enable_if_t, PyVar> call(const PyVar& _callable, ArgT&& args){ return call(_callable, std::forward(args), pkpy::no_arg(), false); } template inline std::enable_if_t, PyVar> call(const PyVar& obj, const Str& func, ArgT&& args){ return call(getattr(obj, func), std::forward(args), pkpy::no_arg(), false); } inline PyVar call(const PyVar& obj, const Str& func){ return call(getattr(obj, func), pkpy::no_arg(), pkpy::no_arg(), false); } PyVar call(const PyVar& _callable, pkpy::Args args, const pkpy::Args& kwargs, bool opCall){ if(is_type(_callable, tp_type)){ PyVar* new_f = _callable->attr().try_get(__new__); PyVar obj; if(new_f != nullptr){ obj = call(*new_f, args, kwargs, false); }else{ obj = new_object(_callable, DUMMY_VAL); PyVarOrNull init_f = getattr(obj, __init__, false); if (init_f != nullptr) call(init_f, args, kwargs, false); } return obj; } const PyVar* callable = &_callable; if(is_type(*callable, tp_bound_method)){ auto& bm = PyBoundMethod_AS_C((*callable)); callable = &bm.method; // get unbound method args.extend_self(bm.obj); } if(is_type(*callable, tp_native_function)){ const auto& f = OBJ_GET(pkpy::NativeFunc, *callable); if(kwargs.size() != 0) TypeError("native_function does not accept keyword arguments"); return f(this, args); } else if(is_type(*callable, tp_function)){ const pkpy::Function& fn = PyFunction_AS_C(*callable); pkpy::shared_ptr _locals = pkpy::make_shared(); pkpy::NameDict& locals = *_locals; int i = 0; for(const auto& name : fn.args){ if(i < args.size()){ locals.emplace(name, args[i++]); continue; } TypeError("missing positional argument '" + name + "'"); } locals.insert(fn.kwargs.begin(), fn.kwargs.end()); std::vector positional_overrided_keys; if(!fn.starred_arg.empty()){ pkpy::List vargs; // handle *args while(i < args.size()) vargs.push_back(args[i++]); locals.emplace(fn.starred_arg, PyTuple(std::move(vargs))); }else{ for(const auto& key : fn.kwargs_order){ if(i < args.size()){ locals[key] = args[i++]; positional_overrided_keys.push_back(key); }else{ break; } } if(i < args.size()) TypeError("too many arguments"); } for(int i=0; i_module; auto _frame = _new_frame(fn.code, _module, _locals, fn._closure); if(fn.code->is_generator){ return PyIter(pkpy::make_shared( this, std::move(_frame))); } callstack.push(std::move(_frame)); if(opCall) return _py_op_call; return _exec(); } TypeError(OBJ_NAME(_t(*callable)).escape(true) + " object is not callable"); return None; } // repl mode is only for setting `frame->id` to 0 PyVarOrNull exec(Str source, Str filename, CompileMode mode, PyVar _module=nullptr){ if(_module == nullptr) _module = _main; try { CodeObject_ code = compile(source, filename, mode); return _exec(code, _module, pkpy::make_shared()); }catch (const pkpy::Exception& e){ *_stderr << e.summary() << '\n'; } catch (const std::exception& e) { *_stderr << "An std::exception occurred! It could be a bug.\n"; *_stderr << e.what() << '\n'; } callstack = {}; return nullptr; } template inline std::unique_ptr _new_frame(Args&&... args){ if(callstack.size() > recursionlimit){ _error("RecursionError", "maximum recursion depth exceeded"); } return std::make_unique(std::forward(args)...); } template inline PyVar _exec(Args&&... args){ callstack.push(_new_frame(std::forward(args)...)); return _exec(); } PyVar _exec(){ Frame* frame = top_frame(); i64 base_id = frame->id; PyVar ret = nullptr; bool need_raise = false; while(true){ if(frame->id < base_id) UNREACHABLE(); try{ if(need_raise){ need_raise = false; _raise(); } ret = run_frame(frame); if(ret == _py_op_yield) return _py_op_yield; if(ret != _py_op_call){ if(frame->id == base_id){ // [ frameBase<- ] callstack.pop(); return ret; }else{ callstack.pop(); frame = callstack.top().get(); frame->push(ret); } }else{ frame = callstack.top().get(); // [ frameBase, newFrame<- ] } }catch(HandledException& e){ continue; }catch(UnhandledException& e){ PyVar obj = frame->pop(); pkpy::Exception& _e = PyException_AS_C(obj); _e.st_push(frame->snapshot()); callstack.pop(); if(callstack.empty()) throw _e; frame = callstack.top().get(); frame->push(obj); if(frame->id < base_id) throw ToBeRaisedException(); need_raise = true; }catch(ToBeRaisedException& e){ need_raise = true; } } } PyVar new_type_object(PyVar mod, Str name, PyVar base){ if(!is_type(base, tp_type)) UNREACHABLE(); PyVar obj = pkpy::make_shared>(tp_type, _all_types.size()); setattr(obj, __base__, base); Str fullName = name; if(mod != builtins) fullName = OBJ_NAME(mod) + "." + name; setattr(obj, __name__, PyStr(fullName)); setattr(mod, name, obj); _all_types.push_back(obj); return obj; } Type _new_type_object(Str name, Type base=0) { PyVar obj = pkpy::make_shared>(tp_type, _all_types.size()); setattr(obj, __base__, _t(base)); _types[name] = obj; _all_types.push_back(obj); return OBJ_GET(Type, obj); } template inline PyVar new_object(const PyVar& type, const T& _value) { if(!is_type(type, tp_type)) UNREACHABLE(); return pkpy::make_shared>(OBJ_GET(Type, type), _value); } template inline PyVar new_object(const PyVar& type, T&& _value) { if(!is_type(type, tp_type)) UNREACHABLE(); return pkpy::make_shared>(OBJ_GET(Type, type), std::move(_value)); } template inline PyVar new_object(Type type, const T& _value) { return pkpy::make_shared>(type, _value); } template inline PyVar new_object(Type type, T&& _value) { return pkpy::make_shared>(type, std::move(_value)); } template inline PyVar new_object(Args&&... args) { return new_object(T::_type(this), T(std::forward(args)...)); } PyVar new_module(const Str& name) { PyVar obj = new_object(tp_module, DUMMY_VAL); setattr(obj, __name__, PyStr(name)); _modules[name] = obj; return obj; } PyVarOrNull getattr(const PyVar& obj, const Str& name, bool throw_err=true) { pkpy::NameDict::iterator it; PyObject* cls; if(is_type(obj, tp_super)){ const PyVar* root = &obj; int depth = 1; while(true){ root = &OBJ_GET(PyVar, *root); if(!is_type(*root, tp_super)) break; depth++; } cls = _t(*root).get(); for(int i=0; iattr(__base__).get(); it = (*root)->attr().find(name); if(it != (*root)->attr().end()) return it->second; }else{ if(obj->is_attr_valid()){ it = obj->attr().find(name); if(it != obj->attr().end()) return it->second; } cls = _t(obj).get(); } while(cls != None.get()) { it = cls->attr().find(name); if(it != cls->attr().end()){ if(is_type(it->second, tp_function) || is_type(it->second, tp_native_function)){ return PyBoundMethod({obj, it->second}); }else{ return it->second; } } cls = cls->attr(__base__).get(); } if(throw_err) AttributeError(obj, name); return nullptr; } template inline void setattr(PyVar& obj, const Str& name, T&& value) { if(obj.is_tagged()) TypeError("cannot set attribute"); PyObject* p = obj.get(); while(p->type == tp_super) p = static_cast(p->value())->get(); if(!p->is_attr_valid()) TypeError("cannot set attribute"); p->attr(name) = std::forward(value); } template void bind_method(PyVar obj, Str funcName, NativeFuncRaw fn) { check_type(obj, tp_type); setattr(obj, funcName, PyNativeFunc(pkpy::NativeFunc(fn, ARGC, true))); } template void bind_func(PyVar obj, Str funcName, NativeFuncRaw fn) { setattr(obj, funcName, PyNativeFunc(pkpy::NativeFunc(fn, ARGC, false))); } template void bind_func(Str typeName, Str funcName, NativeFuncRaw fn) { bind_func(_types[typeName], funcName, fn); } template void bind_method(Str typeName, Str funcName, NativeFuncRaw fn) { bind_method(_types[typeName], funcName, fn); } template void bind_static_method(Args&&... args) { bind_func(std::forward(args)...); } template void _bind_methods(std::vector typeNames, Str funcName, NativeFuncRaw fn) { for(auto& typeName : typeNames) bind_method(typeName, funcName, fn); } template void bind_builtin_func(Str funcName, NativeFuncRaw fn) { bind_func(builtins, funcName, fn); } inline f64 num_to_float(const PyVar& obj){ if (is_int(obj)){ return (f64)PyInt_AS_C(obj); }else if(is_float(obj)){ return PyFloat_AS_C(obj); } TypeError("expected 'int' or 'float', got " + OBJ_NAME(_t(obj)).escape(true)); return 0; } PyVar num_negated(const PyVar& obj){ if (is_int(obj)){ return PyInt(-PyInt_AS_C(obj)); }else if(is_float(obj)){ return PyFloat(-PyFloat_AS_C(obj)); } TypeError("expected 'int' or 'float', got " + OBJ_NAME(_t(obj)).escape(true)); return nullptr; } int normalized_index(int index, int size){ if(index < 0) index += size; if(index < 0 || index >= size){ IndexError(std::to_string(index) + " not in [0, " + std::to_string(size) + ")"); } return index; } Str disassemble(CodeObject_ co){ std::vector jumpTargets; for(auto byte : co->codes){ if(byte.op == OP_JUMP_ABSOLUTE || byte.op == OP_SAFE_JUMP_ABSOLUTE || byte.op == OP_POP_JUMP_IF_FALSE){ jumpTargets.push_back(byte.arg); } } StrStream ss; ss << std::string(54, '-') << '\n'; ss << co->name << ":\n"; int prev_line = -1; for(int i=0; icodes.size(); i++){ const Bytecode& byte = co->codes[i]; if(byte.op == OP_NO_OP) continue; Str line = std::to_string(byte.line); if(byte.line == prev_line) line = ""; else{ if(prev_line != -1) ss << "\n"; prev_line = byte.line; } std::string pointer; if(std::find(jumpTargets.begin(), jumpTargets.end(), i) != jumpTargets.end()){ pointer = "-> "; }else{ pointer = " "; } ss << pad(line, 8) << pointer << pad(std::to_string(i), 3); ss << " " << pad(OP_NAMES[byte.op], 20) << " "; // ss << pad(byte.arg == -1 ? "" : std::to_string(byte.arg), 5); std::string argStr = byte.arg == -1 ? "" : std::to_string(byte.arg); if(byte.op == OP_LOAD_CONST){ argStr += " (" + PyStr_AS_C(asRepr(co->consts[byte.arg])) + ")"; } if(byte.op == OP_LOAD_NAME_REF || byte.op == OP_LOAD_NAME || byte.op == OP_RAISE || byte.op == OP_STORE_NAME){ argStr += " (" + co->names[byte.arg].first.escape(true) + ")"; } if(byte.op == OP_FAST_INDEX || byte.op == OP_FAST_INDEX_REF){ auto& a = co->names[byte.arg & 0xFFFF]; auto& x = co->names[(byte.arg >> 16) & 0xFFFF]; argStr += " (" + a.first + '[' + x.first + "])"; } ss << pad(argStr, 20); // may overflow ss << co->blocks[byte.block].to_string(); if(i != co->codes.size() - 1) ss << '\n'; } StrStream consts; consts << "co_consts: "; consts << PyStr_AS_C(asRepr(PyList(co->consts))); StrStream names; names << "co_names: "; pkpy::List list; for(int i=0; inames.size(); i++){ list.push_back(PyStr(co->names[i].first)); } names << PyStr_AS_C(asRepr(PyList(list))); ss << '\n' << consts.str() << '\n' << names.str() << '\n'; for(int i=0; iconsts.size(); i++){ PyVar obj = co->consts[i]; if(is_type(obj, tp_function)){ const auto& f = PyFunction_AS_C(obj); ss << disassemble(f.code); } } return Str(ss.str()); } // for quick access Type tp_object, tp_type, tp_int, tp_float, tp_bool, tp_str; Type tp_list, tp_tuple; Type tp_function, tp_native_function, tp_native_iterator, tp_bound_method; Type tp_slice, tp_range, tp_module, tp_ref; Type tp_super, tp_exception; template inline PyVarRef PyRef(P&& value) { static_assert(std::is_base_of>::value, "P should derive from BaseRef"); return new_object(tp_ref, std::forward

(value)); } inline const BaseRef* PyRef_AS_C(const PyVar& obj) { if(!is_type(obj, tp_ref)) TypeError("expected an l-value"); return static_cast(obj->value()); } inline const Str& PyStr_AS_C(const PyVar& obj) { check_type(obj, tp_str); return OBJ_GET(Str, obj); } inline PyVar PyStr(const Str& value) { // some BUGs here // if(value.size() == 1){ // char c = value.c_str()[0]; // if(c >= 0) return _ascii_str_pool[(int)c]; // } return new_object(tp_str, value); } inline PyVar PyInt(i64 value) { const i64 MIN_SAFE_INT = -((i64)1 << 62); const i64 MAX_SAFE_INT = ((i64)1 << 62) - 1; if(value < MIN_SAFE_INT || value > MAX_SAFE_INT){ _error("OverflowError", std::to_string(value) + " is out of range"); } value = (value << 2) | 0b01; return PyVar(reinterpret_cast(value)); } inline i64 PyInt_AS_C(const PyVar& obj){ check_type(obj, tp_int); i64 value = obj.cast(); return value >> 2; } inline PyVar PyFloat(f64 value) { auto bits = __8B(value); i64 _int = bits._int; bits._int = (_int & 0b00) | 0b10; return PyVar(reinterpret_cast(bits._int)); } inline f64 PyFloat_AS_C(const PyVar& obj){ check_type(obj, tp_float); i64 _int = obj.cast(); return __8B(_int & 0b00)._float; } DEF_NATIVE(List, pkpy::List, tp_list) DEF_NATIVE(Tuple, pkpy::Tuple, tp_tuple) DEF_NATIVE(Function, pkpy::Function, tp_function) DEF_NATIVE(NativeFunc, pkpy::NativeFunc, tp_native_function) DEF_NATIVE(Iter, pkpy::shared_ptr, tp_native_iterator) DEF_NATIVE(BoundMethod, pkpy::BoundMethod, tp_bound_method) DEF_NATIVE(Range, pkpy::Range, tp_range) DEF_NATIVE(Slice, pkpy::Slice, tp_slice) DEF_NATIVE(Exception, pkpy::Exception, tp_exception) // there is only one True/False, so no need to copy them! inline bool PyBool_AS_C(const PyVar& obj){return obj == True;} inline const PyVar& PyBool(bool value){return value ? True : False;} void init_builtin_types(){ PyVar _tp_object = pkpy::make_shared>(1, 0); PyVar _tp_type = pkpy::make_shared>(1, 1); _all_types.push_back(_tp_object); _all_types.push_back(_tp_type); tp_object = 0; tp_type = 1; _types["object"] = _tp_object; _types["type"] = _tp_type; tp_int = _new_type_object("int"); tp_float = _new_type_object("float"); if(tp_int.index != kTpIntIndex || tp_float.index != kTpFloatIndex) UNREACHABLE(); tp_bool = _new_type_object("bool"); tp_str = _new_type_object("str"); tp_list = _new_type_object("list"); tp_tuple = _new_type_object("tuple"); tp_slice = _new_type_object("slice"); tp_range = _new_type_object("range"); tp_module = _new_type_object("module"); tp_ref = _new_type_object("_ref"); tp_function = _new_type_object("function"); tp_native_function = _new_type_object("native_function"); tp_native_iterator = _new_type_object("native_iterator"); tp_bound_method = _new_type_object("bound_method"); tp_super = _new_type_object("super"); tp_exception = _new_type_object("Exception"); this->None = new_object(_new_type_object("NoneType"), DUMMY_VAL); this->Ellipsis = new_object(_new_type_object("ellipsis"), DUMMY_VAL); this->True = new_object(tp_bool, true); this->False = new_object(tp_bool, false); this->builtins = new_module("builtins"); this->_main = new_module("__main__"); this->_py_op_call = new_object(_new_type_object("_py_op_call"), DUMMY_VAL); this->_py_op_yield = new_object(_new_type_object("_py_op_yield"), DUMMY_VAL); setattr(_t(tp_type), __base__, _t(tp_object)); setattr(_t(tp_object), __base__, None); for (auto& [name, type] : _types) { setattr(type, __name__, PyStr(name)); } std::vector pb_types = {"type", "object", "bool", "int", "float", "str", "list", "tuple", "range"}; for (auto& name : pb_types) { setattr(builtins, name, _types[name]); } } i64 hash(const PyVar& obj){ if (is_type(obj, tp_str)) return PyStr_AS_C(obj).hash(); if (is_int(obj)) return PyInt_AS_C(obj); if (is_type(obj, tp_tuple)) { i64 x = 1000003; const pkpy::Tuple& items = PyTuple_AS_C(obj); for (int i=0; i> 2)); // recommended by Github Copilot } return x; } if (is_type(obj, tp_type)) return obj.cast(); if (is_type(obj, tp_bool)) return PyBool_AS_C(obj) ? 1 : 0; if (is_float(obj)){ f64 val = PyFloat_AS_C(obj); return (i64)std::hash()(val); } TypeError("unhashable type: " + OBJ_NAME(_t(obj)).escape(true)); return 0; } /***** Error Reporter *****/ private: void _error(const Str& name, const Str& msg){ _error(pkpy::Exception(name, msg)); } void _error(pkpy::Exception e){ if(callstack.empty()){ e.is_re = false; throw e; } top_frame()->push(PyException(e)); _raise(); } void _raise(){ bool ok = top_frame()->jump_to_exception_handler(); if(ok) throw HandledException(); else throw UnhandledException(); } public: void IOError(const Str& msg) { _error("IOError", msg); } void NotImplementedError(){ _error("NotImplementedError", ""); } void TypeError(const Str& msg){ _error("TypeError", msg); } void ZeroDivisionError(){ _error("ZeroDivisionError", "division by zero"); } void IndexError(const Str& msg){ _error("IndexError", msg); } void ValueError(const Str& msg){ _error("ValueError", msg); } void NameError(const Str& name){ _error("NameError", "name " + name.escape(true) + " is not defined"); } void AttributeError(PyVar obj, const Str& name){ _error("AttributeError", "type " + OBJ_NAME(_t(obj)).escape(true) + " has no attribute " + name.escape(true)); } inline void check_type(const PyVar& obj, Type type){ if(is_type(obj, type)) return; TypeError("expected " + OBJ_NAME(_t(type)).escape(true) + ", but got " + OBJ_NAME(_t(obj)).escape(true)); } inline PyVar& _t(Type t){ return _all_types[t.index]; } inline PyVar& _t(const PyVar& obj){ if(is_int(obj)) return _t(tp_int); if(is_float(obj)) return _t(tp_float); return _all_types[OBJ_GET(Type, _t(obj->type)).index]; } template PyVar register_class(PyVar mod){ PyVar type = new_type_object(mod, T::_name(), _t(tp_object)); if(OBJ_NAME(mod) != T::_mod()) UNREACHABLE(); T::_register(this, mod, type); return type; } template inline T& py_cast(const PyVar& obj){ check_type(obj, T::_type(this)); return OBJ_GET(T, obj); } ~VM() { if(!use_stdio){ delete _stdout; delete _stderr; } } CodeObject_ compile(Str source, Str filename, CompileMode mode); }; /***** Pointers' Impl *****/ PyVar NameRef::get(VM* vm, Frame* frame) const{ PyVar* val; val = frame->f_locals().try_get(name()); if(val) return *val; val = frame->f_closure_try_get(name()); if(val) return *val; val = frame->f_globals().try_get(name()); if(val) return *val; val = vm->builtins->attr().try_get(name()); if(val) return *val; vm->NameError(name()); return nullptr; } void NameRef::set(VM* vm, Frame* frame, PyVar val) const{ switch(scope()) { case NAME_LOCAL: frame->f_locals()[name()] = std::move(val); break; case NAME_GLOBAL: { PyVar* existing = frame->f_locals().try_get(name()); if(existing != nullptr){ *existing = std::move(val); }else{ frame->f_globals()[name()] = std::move(val); } } break; default: UNREACHABLE(); } } void NameRef::del(VM* vm, Frame* frame) const{ switch(scope()) { case NAME_LOCAL: { if(frame->f_locals().contains(name())){ frame->f_locals().erase(name()); }else{ vm->NameError(name()); } } break; case NAME_GLOBAL: { if(frame->f_locals().contains(name())){ frame->f_locals().erase(name()); }else{ if(frame->f_globals().contains(name())){ frame->f_globals().erase(name()); }else{ vm->NameError(name()); } } } break; default: UNREACHABLE(); } } PyVar AttrRef::get(VM* vm, Frame* frame) const{ return vm->getattr(obj, attr.name()); } void AttrRef::set(VM* vm, Frame* frame, PyVar val) const{ vm->setattr(obj, attr.name(), val); } void AttrRef::del(VM* vm, Frame* frame) const{ if(!obj->is_attr_valid()) vm->TypeError("cannot delete attribute"); if(!obj->attr().contains(attr.name())) vm->AttributeError(obj, attr.name()); obj->attr().erase(attr.name()); } PyVar IndexRef::get(VM* vm, Frame* frame) const{ return vm->call(obj, __getitem__, pkpy::one_arg(index)); } void IndexRef::set(VM* vm, Frame* frame, PyVar val) const{ vm->call(obj, __setitem__, pkpy::two_args(index, val)); } void IndexRef::del(VM* vm, Frame* frame) const{ vm->call(obj, __delitem__, pkpy::one_arg(index)); } PyVar TupleRef::get(VM* vm, Frame* frame) const{ pkpy::Tuple args(objs.size()); for (int i = 0; i < objs.size(); i++) { args[i] = vm->PyRef_AS_C(objs[i])->get(vm, frame); } return vm->PyTuple(std::move(args)); } void TupleRef::set(VM* vm, Frame* frame, PyVar val) const{ #define TUPLE_REF_SET() \ if(args.size() > objs.size()) vm->ValueError("too many values to unpack"); \ if(args.size() < objs.size()) vm->ValueError("not enough values to unpack"); \ for (int i = 0; i < objs.size(); i++) vm->PyRef_AS_C(objs[i])->set(vm, frame, args[i]); if(is_type(val, vm->tp_tuple)){ const pkpy::Tuple& args = OBJ_GET(pkpy::Tuple, val); TUPLE_REF_SET() }else if(is_type(val, vm->tp_list)){ const pkpy::List& args = OBJ_GET(pkpy::List, val); TUPLE_REF_SET() }else{ vm->TypeError("only tuple or list can be unpacked"); } #undef TUPLE_REF_SET } void TupleRef::del(VM* vm, Frame* frame) const{ for(int i=0; iPyRef_AS_C(objs[i])->del(vm, frame); } /***** Frame's Impl *****/ inline void Frame::try_deref(VM* vm, PyVar& v){ if(is_type(v, vm->tp_ref)) v = vm->PyRef_AS_C(v)->get(vm, this); } PyVar pkpy::NativeFunc::operator()(VM* vm, pkpy::Args& args) const{ int args_size = args.size() - (int)method; // remove self if(argc != -1 && args_size != argc) { vm->TypeError("expected " + std::to_string(argc) + " arguments, but got " + std::to_string(args_size)); } return f(vm, args); } void CodeObject::optimize(VM* vm){ for(int i=1; inum_negated(consts[pos]); } if(i>=2 && codes[i].op == OP_BUILD_INDEX){ const Bytecode& a = codes[i-1]; const Bytecode& x = codes[i-2]; if(codes[i].arg == 1){ if(a.op == OP_LOAD_NAME && x.op == OP_LOAD_NAME){ codes[i].op = OP_FAST_INDEX; }else continue; }else{ if(a.op == OP_LOAD_NAME_REF && x.op == OP_LOAD_NAME_REF){ codes[i].op = OP_FAST_INDEX_REF; }else continue; } codes[i].arg = (a.arg << 16) | x.arg; codes[i-1].op = OP_NO_OP; codes[i-2].op = OP_NO_OP; } } }