#include "pocketpy/pocketpy.h" #include "pocketpy/common/utils.h" #include "pocketpy/objects/object.h" #include "pocketpy/common/sstream.h" #include "pocketpy/interpreter/vm.h" typedef struct c11_array2d { py_TValue* data; // slots int n_cols; int n_rows; int numel; } c11_array2d; typedef struct c11_array2d_iterator { c11_array2d* array; int index; } c11_array2d_iterator; static bool py_array2d_is_valid(c11_array2d* self, int col, int row) { return col >= 0 && col < self->n_cols && row >= 0 && row < self->n_rows; } static py_ObjectRef py_array2d__get(c11_array2d* self, int col, int row) { return self->data + row * self->n_cols + col; } static void py_array2d__set(c11_array2d* self, int col, int row, py_Ref value) { self->data[row * self->n_cols + col] = *value; } static c11_array2d* py_array2d(py_OutRef out, int n_cols, int n_rows) { int numel = n_cols * n_rows; c11_array2d* ud = py_newobject(out, tp_array2d, numel, sizeof(c11_array2d)); ud->data = py_getslot(out, 0); ud->n_cols = n_cols; ud->n_rows = n_rows; ud->numel = numel; return ud; } /* bindings */ static bool array2d__new__(int argc, py_Ref argv) { // __new__(cls, n_cols: int, n_rows: int, default=None) py_Ref default_ = py_arg(3); PY_CHECK_ARG_TYPE(0, tp_type); PY_CHECK_ARG_TYPE(1, tp_int); PY_CHECK_ARG_TYPE(2, tp_int); int n_cols = argv[1]._i64; int n_rows = argv[2]._i64; int numel = n_cols * n_rows; if(n_cols <= 0 || n_rows <= 0) return ValueError("array2d() expected positive dimensions"); c11_array2d* ud = py_array2d(py_pushtmp(), n_cols, n_rows); // setup initial values if(py_callable(default_)) { for(int i = 0; i < numel; i++) { bool ok = py_call(default_, 0, NULL); if(!ok) return false; ud->data[i] = *py_retval(); } } else { for(int i = 0; i < numel; i++) { ud->data[i] = *default_; } } py_assign(py_retval(), py_peek(-1)); py_pop(); return true; } static bool array2d_n_cols(int argc, py_Ref argv) { PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); py_newint(py_retval(), self->n_cols); return true; } static bool array2d_n_rows(int argc, py_Ref argv) { PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); py_newint(py_retval(), self->n_rows); return true; } static bool array2d_numel(int argc, py_Ref argv) { PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); py_newint(py_retval(), self->numel); return true; } static bool array2d_is_valid(int argc, py_Ref argv) { PY_CHECK_ARGC(3); c11_array2d* self = py_touserdata(argv); PY_CHECK_ARG_TYPE(1, tp_int); PY_CHECK_ARG_TYPE(2, tp_int); int col = py_toint(py_arg(1)); int row = py_toint(py_arg(2)); py_newbool(py_retval(), py_array2d_is_valid(self, col, row)); return true; } static bool array2d_get(int argc, py_Ref argv) { py_Ref default_; c11_array2d* self = py_touserdata(argv); PY_CHECK_ARG_TYPE(1, tp_int); PY_CHECK_ARG_TYPE(2, tp_int); if(argc == 3) { default_ = py_None(); } else if(argc == 4) { default_ = py_arg(3); } else { return TypeError("get() expected 3 or 4 arguments"); } int col = py_toint(py_arg(1)); int row = py_toint(py_arg(2)); if(py_array2d_is_valid(self, col, row)) { py_assign(py_retval(), py_array2d__get(self, col, row)); } else { py_assign(py_retval(), default_); } return true; } static bool array2d_unsafe_get(int argc, py_Ref argv) { PY_CHECK_ARGC(3); c11_array2d* self = py_touserdata(argv); PY_CHECK_ARG_TYPE(1, tp_int); PY_CHECK_ARG_TYPE(2, tp_int); int col = py_toint(py_arg(1)); int row = py_toint(py_arg(2)); py_assign(py_retval(), py_array2d__get(self, col, row)); return true; } static bool array2d_unsafe_set(int argc, py_Ref argv) { PY_CHECK_ARGC(4); c11_array2d* self = py_touserdata(argv); PY_CHECK_ARG_TYPE(1, tp_int); PY_CHECK_ARG_TYPE(2, tp_int); int col = py_toint(py_arg(1)); int row = py_toint(py_arg(2)); py_array2d__set(self, col, row, py_arg(3)); py_newnone(py_retval()); return true; } static bool array2d__len__(int argc, py_Ref argv) { PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); py_newint(py_retval(), self->numel); return true; } static bool array2d__eq__(int argc, py_Ref argv) { PY_CHECK_ARGC(2); c11_array2d* self = py_touserdata(argv); if(!py_istype(py_arg(1), tp_array2d)) { py_newnotimplemented(py_retval()); return true; } c11_array2d* other = py_touserdata(py_arg(1)); if(self->n_cols != other->n_cols || self->n_rows != other->n_rows) { py_newbool(py_retval(), false); return true; } for(int i = 0; i < self->numel; i++) { int res = py_equal(self->data + i, other->data + i); if(res == -1) return false; if(res == 0) { py_newbool(py_retval(), false); return true; } } py_newbool(py_retval(), true); return true; } static bool array2d__ne__(int argc, py_Ref argv) { bool ok = array2d__eq__(argc, argv); if(!ok) return false; if(py_isbool(py_retval())) { py_newbool(py_retval(), !py_tobool(py_retval())); } return true; } static bool array2d__repr__(int argc, py_Ref argv) { PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); char buf[256]; snprintf(buf, sizeof(buf), "array2d(%d, %d)", self->n_cols, self->n_rows); py_newstr(py_retval(), buf); return true; } static bool array2d__iter__(int argc, py_Ref argv) { PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); c11_array2d_iterator* ud = py_newobject(py_retval(), tp_array2d_iterator, 1, sizeof(c11_array2d_iterator)); py_setslot(py_retval(), 0, argv); // keep the array alive ud->array = self; ud->index = 0; return true; } static bool array2d_iterator__next__(int argc, py_Ref argv) { // def __iter__(self) -> Iterator[tuple[int, int, T]]: ... PY_CHECK_ARGC(1); c11_array2d_iterator* self = py_touserdata(argv); if(self->index < self->array->numel) { div_t res = div(self->index, self->array->n_cols); py_newtuple(py_retval(), 3); py_TValue* data = py_tuple_data(py_retval()); py_newint(&data[0], res.rem); py_newint(&data[1], res.quot); py_assign(&data[2], self->array->data + self->index); self->index++; return true; } return StopIteration(); } static bool array2d_map(int argc, py_Ref argv) { // def map(self, f: Callable[[T], Any]) -> 'array2d': ... PY_CHECK_ARGC(2); c11_array2d* self = py_touserdata(argv); py_Ref f = py_arg(1); c11_array2d* res = py_array2d(py_pushtmp(), self->n_cols, self->n_rows); for(int i = 0; i < self->numel; i++) { bool ok = py_call(f, 1, self->data + i); if(!ok) return false; res->data[i] = *py_retval(); } py_assign(py_retval(), py_peek(-1)); py_pop(); return true; } static bool array2d_copy(int argc, py_Ref argv) { // def copy(self) -> 'array2d': ... PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); c11_array2d* res = py_array2d(py_retval(), self->n_cols, self->n_rows); memcpy(res->data, self->data, self->numel * sizeof(py_TValue)); return true; } static bool array2d_fill_(int argc, py_Ref argv) { // def fill_(self, value: T) -> None: ... PY_CHECK_ARGC(2); c11_array2d* self = py_touserdata(argv); for(int i = 0; i < self->numel; i++) self->data[i] = argv[1]; py_newnone(py_retval()); return true; } static bool array2d_apply_(int argc, py_Ref argv) { // def apply_(self, f: Callable[[T], T]) -> None: ... PY_CHECK_ARGC(2); c11_array2d* self = py_touserdata(argv); py_Ref f = py_arg(1); for(int i = 0; i < self->numel; i++) { bool ok = py_call(f, 1, self->data + i); if(!ok) return false; self->data[i] = *py_retval(); } py_newnone(py_retval()); return true; } static bool array2d_copy_(int argc, py_Ref argv) { // def copy_(self, src: 'array2d') -> None: ... PY_CHECK_ARGC(2); c11_array2d* self = py_touserdata(argv); py_Type src_type = py_typeof(py_arg(1)); if(src_type == tp_array2d) { c11_array2d* src = py_touserdata(py_arg(1)); if(self->n_cols != src->n_cols || self->n_rows != src->n_rows) { return ValueError("copy_() expected the same shape: (%d, %d) != (%d, %d)", self->n_cols, self->n_rows, src->n_cols, src->n_rows); } memcpy(self->data, src->data, self->numel * sizeof(py_TValue)); } else { py_TValue* data; int length = pk_arrayview(py_arg(1), &data); if(length != -1) { if(self->numel != length) { return ValueError("copy_() expected the same numel: %d != %d", self->numel, length); } memcpy(self->data, data, self->numel * sizeof(py_TValue)); } else { return TypeError("copy_() expected `array2d`, `list` or `tuple`, got '%t", src_type); } } py_newnone(py_retval()); return true; } static bool array2d_tolist(int argc, py_Ref argv) { // def tolist(self) -> list[list[T]]: ... PY_CHECK_ARGC(1); c11_array2d* self = py_touserdata(argv); py_newlistn(py_retval(), self->n_rows); for(int j = 0; j < self->n_rows; j++) { py_Ref row_j = py_list_getitem(py_retval(), j); py_newlistn(row_j, self->n_cols); for(int i = 0; i < self->n_cols; i++) { py_list_setitem(row_j, i, py_array2d__get(self, i, j)); } } return true; } static bool array2d_count(int argc, py_Ref argv) { // def count(self, value: T) -> int: ... PY_CHECK_ARGC(2); c11_array2d* self = py_touserdata(argv); int count = 0; for(int i = 0; i < self->numel; i++) { int res = py_equal(self->data + i, &argv[1]); if(res == -1) return false; count += res; } py_newint(py_retval(), count); return true; } static bool array2d_find_bounding_rect(int argc, py_Ref argv) { c11_array2d* self = py_touserdata(argv); py_Ref value = py_arg(1); int left = self->n_cols; int top = self->n_rows; int right = 0; int bottom = 0; for(int j = 0; j < self->n_rows; j++) { for(int i = 0; i < self->n_cols; i++) { int res = py_equal(py_array2d__get(self, i, j), value); if(res == -1) return false; if(res == 1) { left = c11__min(left, i); top = c11__min(top, j); right = c11__max(right, i); bottom = c11__max(bottom, j); } } } int width = right - left + 1; int height = bottom - top + 1; if(width <= 0 || height <= 0) { py_newnone(py_retval()); } else { py_newtuple(py_retval(), 4); py_TValue* data = py_tuple_data(py_retval()); py_newint(&data[0], left); py_newint(&data[1], top); py_newint(&data[2], width); py_newint(&data[3], height); } return true; } static bool array2d_count_neighbors(int argc, py_Ref argv) { // def count_neighbors(self, value: T, neighborhood: Neighborhood) -> 'array2d[int]': ... PY_CHECK_ARGC(3); c11_array2d* self = py_touserdata(argv); c11_array2d* res = py_array2d(py_pushtmp(), self->n_cols, self->n_rows); py_Ref value = py_arg(1); const char* neighborhood = py_tostr(py_arg(2)); #define INC_COUNT(i, j) \ do { \ if(py_array2d_is_valid(self, i, j)) { \ int res = py_equal(py_array2d__get(self, i, j), value); \ if(res == -1) return false; \ count += res; \ } \ } while(0) if(strcmp(neighborhood, "Moore") == 0) { for(int j = 0; j < res->n_rows; j++) { for(int i = 0; i < res->n_cols; i++) { int count = 0; INC_COUNT(i - 1, j - 1); INC_COUNT(i, j - 1); INC_COUNT(i + 1, j - 1); INC_COUNT(i - 1, j); INC_COUNT(i + 1, j); INC_COUNT(i - 1, j + 1); INC_COUNT(i, j + 1); INC_COUNT(i + 1, j + 1); py_newint(py_array2d__get(res, i, j), count); } } } else if(strcmp(neighborhood, "von Neumann") == 0) { for(int j = 0; j < res->n_rows; j++) { for(int i = 0; i < res->n_cols; i++) { int count = 0; INC_COUNT(i, j - 1); INC_COUNT(i - 1, j); INC_COUNT(i + 1, j); INC_COUNT(i, j + 1); py_newint(py_array2d__get(res, i, j), count); } } } else { return ValueError("neighborhood must be 'Moore' or 'von Neumann'"); } py_assign(py_retval(), py_peek(-1)); py_pop(); return true; } #define HANDLE_SLICE() \ int start_col, stop_col, step_col; \ int start_row, stop_row, step_row; \ if(!pk__parse_int_slice(x, self->n_cols, &start_col, &stop_col, &step_col)) return false; \ if(!pk__parse_int_slice(y, self->n_rows, &start_row, &stop_row, &step_row)) return false; \ if(step_col != 1 || step_row != 1) return ValueError("slice step must be 1"); \ int slice_width = stop_col - start_col; \ int slice_height = stop_row - start_row; \ if(slice_width <= 0 || slice_height <= 0) \ return ValueError("slice width and height must be positive"); static bool array2d__getitem__(int argc, py_Ref argv) { PY_CHECK_ARGC(2); PY_CHECK_ARG_TYPE(1, tp_tuple); if(py_tuple_len(py_arg(1)) != 2) return TypeError("expected a tuple of 2 elements"); py_Ref x = py_tuple_getitem(py_arg(1), 0); py_Ref y = py_tuple_getitem(py_arg(1), 1); c11_array2d* self = py_touserdata(argv); if(py_isint(x) && py_isint(y)) { int col = py_toint(x); int row = py_toint(y); if(py_array2d_is_valid(self, col, row)) { py_assign(py_retval(), py_array2d__get(self, col, row)); return true; } return IndexError("(%d, %d) is not a valid index of array2d(%d, %d)", col, row, self->n_cols, self->n_rows); } else if(py_istype(x, tp_slice) && py_istype(y, tp_slice)) { HANDLE_SLICE(); c11_array2d* res = py_array2d(py_retval(), slice_width, slice_height); for(int j = start_row; j < stop_row; j++) { for(int i = start_col; i < stop_col; i++) { py_array2d__set(res, i - start_col, j - start_row, py_array2d__get(self, i, j)); } } return true; } else { return TypeError("expected a tuple of 2 ints or slices"); } } static bool array2d__setitem__(int argc, py_Ref argv) { PY_CHECK_ARGC(3); PY_CHECK_ARG_TYPE(1, tp_tuple); if(py_tuple_len(py_arg(1)) != 2) return TypeError("expected a tuple of 2 elements"); py_Ref x = py_tuple_getitem(py_arg(1), 0); py_Ref y = py_tuple_getitem(py_arg(1), 1); c11_array2d* self = py_touserdata(argv); py_Ref value = py_arg(2); if(py_isint(x) && py_isint(y)) { int col = py_toint(x); int row = py_toint(y); if(py_array2d_is_valid(self, col, row)) { py_array2d__set(self, col, row, value); py_newnone(py_retval()); return true; } return IndexError("(%d, %d) is not a valid index of array2d(%d, %d)", col, row, self->n_cols, self->n_rows); } else if(py_istype(x, tp_slice) && py_istype(y, tp_slice)) { HANDLE_SLICE(); bool is_basic_type = false; switch(value->type) { case tp_int: case tp_float: case tp_str: case tp_NoneType: case tp_bool: is_basic_type = true; break; default: { if(!py_istype(value, tp_array2d)) { return TypeError("expected int/float/str/bool/None or an array2d instance"); } } } if(is_basic_type) { for(int j = start_row; j < stop_row; j++) { for(int i = start_col; i < stop_col; i++) { py_array2d__set(self, i, j, py_arg(2)); } } } else { c11_array2d* src = py_touserdata(value); if(slice_width != src->n_cols || slice_height != src->n_rows) { return ValueError("expected the same shape: (%d, %d) != (%d, %d)", slice_width, slice_height, src->n_cols, src->n_rows); } for(int j = 0; j < slice_height; j++) { for(int i = 0; i < slice_width; i++) { py_array2d__set(self, i + start_col, j + start_row, py_array2d__get(src, i, j)); } } } py_newnone(py_retval()); return true; } else { return TypeError("expected a tuple of 2 ints or slices"); } } void pk__add_module_array2d() { py_GlobalRef mod = py_newmodule("array2d"); py_Type array2d = pk_newtype("array2d", tp_object, mod, NULL, false, true); py_Type array2d_iterator = pk_newtype("array2d_iterator", tp_object, mod, NULL, false, true); assert(array2d == tp_array2d); assert(array2d_iterator == tp_array2d_iterator); py_setdict(mod, py_name("array2d"), py_tpobject(array2d)); py_bindmagic(array2d_iterator, __iter__, pk_wrapper__self); py_bindmagic(array2d_iterator, __next__, array2d_iterator__next__); py_bind(py_tpobject(array2d), "__new__(cls, n_cols: int, n_rows: int, default=None)", array2d__new__); py_bindmagic(array2d, __len__, array2d__len__); py_bindmagic(array2d, __eq__, array2d__eq__); py_bindmagic(array2d, __ne__, array2d__ne__); py_bindmagic(array2d, __repr__, array2d__repr__); py_bindmagic(array2d, __iter__, array2d__iter__); py_bindmagic(array2d, __getitem__, array2d__getitem__); py_bindmagic(array2d, __setitem__, array2d__setitem__); py_bindproperty(array2d, "n_cols", array2d_n_cols, NULL); py_bindproperty(array2d, "n_rows", array2d_n_rows, NULL); py_bindproperty(array2d, "width", array2d_n_cols, NULL); py_bindproperty(array2d, "height", array2d_n_rows, NULL); py_bindproperty(array2d, "numel", array2d_numel, NULL); py_bindmethod(array2d, "is_valid", array2d_is_valid); py_bindmethod(array2d, "get", array2d_get); py_bindmethod(array2d, "unsafe_get", array2d_unsafe_get); py_bindmethod(array2d, "unsafe_set", array2d_unsafe_set); py_bindmethod(array2d, "map", array2d_map); py_bindmethod(array2d, "copy", array2d_copy); py_bindmethod(array2d, "fill_", array2d_fill_); py_bindmethod(array2d, "apply_", array2d_apply_); py_bindmethod(array2d, "copy_", array2d_copy_); py_bindmethod(array2d, "tolist", array2d_tolist); py_bindmethod(array2d, "count", array2d_count); py_bindmethod(array2d, "find_bounding_rect", array2d_find_bounding_rect); py_bindmethod(array2d, "count_neighbors", array2d_count_neighbors); }