// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef B2_DYNAMIC_TREE_H #define B2_DYNAMIC_TREE_H #include "b2_api.h" #include "b2_collision.h" #include "b2_growable_stack.h" #define b2_nullNode (-1) /// A node in the dynamic tree. The client does not interact with this directly. struct B2_API b2TreeNode { bool IsLeaf() const { return child1 == b2_nullNode; } /// Enlarged AABB b2AABB aabb; void* userData; union { int32 parent; int32 next; }; int32 child1; int32 child2; // leaf = 0, free node = -1 int32 height; bool moved; }; /// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt. /// A dynamic tree arranges data in a binary tree to accelerate /// queries such as volume queries and ray casts. Leafs are proxies /// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor /// so that the proxy AABB is bigger than the client object. This allows the client /// object to move by small amounts without triggering a tree update. /// /// Nodes are pooled and relocatable, so we use node indices rather than pointers. class B2_API b2DynamicTree { public: /// Constructing the tree initializes the node pool. b2DynamicTree(); /// Destroy the tree, freeing the node pool. ~b2DynamicTree(); /// Create a proxy. Provide a tight fitting AABB and a userData pointer. int32 CreateProxy(const b2AABB& aabb, void* userData); /// Destroy a proxy. This asserts if the id is invalid. void DestroyProxy(int32 proxyId); /// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB, /// then the proxy is removed from the tree and re-inserted. Otherwise /// the function returns immediately. /// @return true if the proxy was re-inserted. bool MoveProxy(int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement); /// Get proxy user data. /// @return the proxy user data or 0 if the id is invalid. void* GetUserData(int32 proxyId) const; bool WasMoved(int32 proxyId) const; void ClearMoved(int32 proxyId); /// Get the fat AABB for a proxy. const b2AABB& GetFatAABB(int32 proxyId) const; /// Query an AABB for overlapping proxies. The callback class /// is called for each proxy that overlaps the supplied AABB. template void Query(T* callback, const b2AABB& aabb) const; /// Ray-cast against the proxies in the tree. This relies on the callback /// to perform a exact ray-cast in the case were the proxy contains a shape. /// The callback also performs the any collision filtering. This has performance /// roughly equal to k * log(n), where k is the number of collisions and n is the /// number of proxies in the tree. /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1). /// @param callback a callback class that is called for each proxy that is hit by the ray. template void RayCast(T* callback, const b2RayCastInput& input) const; /// Validate this tree. For testing. void Validate() const; /// Compute the height of the binary tree in O(N) time. Should not be /// called often. int32 GetHeight() const; /// Get the maximum balance of an node in the tree. The balance is the difference /// in height of the two children of a node. int32 GetMaxBalance() const; /// Get the ratio of the sum of the node areas to the root area. float GetAreaRatio() const; /// Build an optimal tree. Very expensive. For testing. void RebuildBottomUp(); /// Shift the world origin. Useful for large worlds. /// The shift formula is: position -= newOrigin /// @param newOrigin the new origin with respect to the old origin void ShiftOrigin(const b2Vec2& newOrigin); private: int32 AllocateNode(); void FreeNode(int32 node); void InsertLeaf(int32 node); void RemoveLeaf(int32 node); int32 Balance(int32 index); int32 ComputeHeight() const; int32 ComputeHeight(int32 nodeId) const; void ValidateStructure(int32 index) const; void ValidateMetrics(int32 index) const; int32 m_root; b2TreeNode* m_nodes; int32 m_nodeCount; int32 m_nodeCapacity; int32 m_freeList; int32 m_insertionCount; }; inline void* b2DynamicTree::GetUserData(int32 proxyId) const { b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); return m_nodes[proxyId].userData; } inline bool b2DynamicTree::WasMoved(int32 proxyId) const { b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); return m_nodes[proxyId].moved; } inline void b2DynamicTree::ClearMoved(int32 proxyId) { b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); m_nodes[proxyId].moved = false; } inline const b2AABB& b2DynamicTree::GetFatAABB(int32 proxyId) const { b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); return m_nodes[proxyId].aabb; } template inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const { b2GrowableStack stack; stack.Push(m_root); while (stack.GetCount() > 0) { int32 nodeId = stack.Pop(); if (nodeId == b2_nullNode) { continue; } const b2TreeNode* node = m_nodes + nodeId; if (b2TestOverlap(node->aabb, aabb)) { if (node->IsLeaf()) { bool proceed = callback->QueryCallback(nodeId); if (proceed == false) { return; } } else { stack.Push(node->child1); stack.Push(node->child2); } } } } template inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const { b2Vec2 p1 = input.p1; b2Vec2 p2 = input.p2; b2Vec2 r = p2 - p1; b2Assert(r.LengthSquared() > 0.0f); r.Normalize(); // v is perpendicular to the segment. b2Vec2 v = b2Cross(1.0f, r); b2Vec2 abs_v = b2Abs(v); // Separating axis for segment (Gino, p80). // |dot(v, p1 - c)| > dot(|v|, h) float maxFraction = input.maxFraction; // Build a bounding box for the segment. b2AABB segmentAABB; { b2Vec2 t = p1 + maxFraction * (p2 - p1); segmentAABB.lowerBound = b2Min(p1, t); segmentAABB.upperBound = b2Max(p1, t); } b2GrowableStack stack; stack.Push(m_root); while (stack.GetCount() > 0) { int32 nodeId = stack.Pop(); if (nodeId == b2_nullNode) { continue; } const b2TreeNode* node = m_nodes + nodeId; if (b2TestOverlap(node->aabb, segmentAABB) == false) { continue; } // Separating axis for segment (Gino, p80). // |dot(v, p1 - c)| > dot(|v|, h) b2Vec2 c = node->aabb.GetCenter(); b2Vec2 h = node->aabb.GetExtents(); float separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h); if (separation > 0.0f) { continue; } if (node->IsLeaf()) { b2RayCastInput subInput; subInput.p1 = input.p1; subInput.p2 = input.p2; subInput.maxFraction = maxFraction; float value = callback->RayCastCallback(subInput, nodeId); if (value == 0.0f) { // The client has terminated the ray cast. return; } if (value > 0.0f) { // Update segment bounding box. maxFraction = value; b2Vec2 t = p1 + maxFraction * (p2 - p1); segmentAABB.lowerBound = b2Min(p1, t); segmentAABB.upperBound = b2Max(p1, t); } } else { stack.Push(node->child1); stack.Push(node->child2); } } } #endif