#include "pocketpy/linalg.h" namespace pkpy{ #define BIND_VEC_VEC_OP(D, name, op) \ vm->bind_method<1>(type, #name, [](VM* vm, ArgsView args){ \ PyVec##D& self = _CAST(PyVec##D&, args[0]); \ PyVec##D& other = CAST(PyVec##D&, args[1]); \ return VAR(self op other); \ }); #define BIND_VEC_FLOAT_OP(D, name, op) \ vm->bind_method<1>(type, #name, [](VM* vm, ArgsView args){ \ PyVec##D& self = _CAST(PyVec##D&, args[0]); \ f64 other = CAST(f64, args[1]); \ return VAR(self op other); \ }); #define BIND_VEC_FUNCTION_0(D, name) \ vm->bind_method<0>(type, #name, [](VM* vm, ArgsView args){ \ PyVec##D& self = _CAST(PyVec##D&, args[0]); \ return VAR(self.name()); \ }); #define BIND_VEC_FUNCTION_1(D, name) \ vm->bind_method<1>(type, #name, [](VM* vm, ArgsView args){ \ PyVec##D& self = _CAST(PyVec##D&, args[0]); \ PyVec##D& other = CAST(PyVec##D&, args[1]); \ return VAR(self.name(other)); \ }); // https://github.com/Unity-Technologies/UnityCsReference/blob/master/Runtime/Export/Math/Vector2.cs#L289 static Vec2 SmoothDamp(Vec2 current, Vec2 target, PyVec2& currentVelocity, float smoothTime, float maxSpeed, float deltaTime) { // Based on Game Programming Gems 4 Chapter 1.10 smoothTime = std::max(0.0001F, smoothTime); float omega = 2.0F / smoothTime; float x = omega * deltaTime; float exp = 1.0F / (1.0F + x + 0.48F * x * x + 0.235F * x * x * x); float change_x = current.x - target.x; float change_y = current.y - target.y; Vec2 originalTo = target; // Clamp maximum speed float maxChange = maxSpeed * smoothTime; float maxChangeSq = maxChange * maxChange; float sqDist = change_x * change_x + change_y * change_y; if (sqDist > maxChangeSq) { float mag = std::sqrt(sqDist); change_x = change_x / mag * maxChange; change_y = change_y / mag * maxChange; } target.x = current.x - change_x; target.y = current.y - change_y; float temp_x = (currentVelocity.x + omega * change_x) * deltaTime; float temp_y = (currentVelocity.y + omega * change_y) * deltaTime; currentVelocity.x = (currentVelocity.x - omega * temp_x) * exp; currentVelocity.y = (currentVelocity.y - omega * temp_y) * exp; float output_x = target.x + (change_x + temp_x) * exp; float output_y = target.y + (change_y + temp_y) * exp; // Prevent overshooting float origMinusCurrent_x = originalTo.x - current.x; float origMinusCurrent_y = originalTo.y - current.y; float outMinusOrig_x = output_x - originalTo.x; float outMinusOrig_y = output_y - originalTo.y; if (origMinusCurrent_x * outMinusOrig_x + origMinusCurrent_y * outMinusOrig_y > 0) { output_x = originalTo.x; output_y = originalTo.y; currentVelocity.x = (output_x - originalTo.x) / deltaTime; currentVelocity.y = (output_y - originalTo.y) / deltaTime; } return Vec2(output_x, output_y); } void PyVec2::_register(VM* vm, PyObject* mod, PyObject* type){ PY_STRUCT_LIKE(PyVec2) vm->bind_constructor<3>(type, [](VM* vm, ArgsView args){ float x = CAST_F(args[1]); float y = CAST_F(args[2]); return vm->heap.gcnew(PK_OBJ_GET(Type, args[0]), Vec2(x, y)); }); // @staticmethod vm->bind(type, "smooth_damp(current: vec2, target: vec2, current_velocity: vec2, smooth_time: float, max_speed: float, delta_time: float) -> vec2", [](VM* vm, ArgsView args){ Vec2 current = CAST(Vec2, args[0]); Vec2 target = CAST(Vec2, args[1]); PyVec2& current_velocity = CAST(PyVec2&, args[2]); float smooth_time = CAST_F(args[3]); float max_speed = CAST_F(args[4]); float delta_time = CAST_F(args[5]); Vec2 ret = SmoothDamp(current, target, current_velocity, smooth_time, max_speed, delta_time); return VAR(ret); }, {}, BindType::STATICMETHOD); // @staticmethod vm->bind(type, "angle(__from: vec2, __to: vec2) -> float", [](VM* vm, ArgsView args){ PyVec2 __from = CAST(PyVec2, args[0]); PyVec2 __to = CAST(PyVec2, args[1]); float val = atan2f(__to.y, __to.x) - atan2f(__from.y, __from.x); const float PI = 3.1415926535897932384f; if(val > PI) val -= 2*PI; if(val < -PI) val += 2*PI; return VAR(val); }, {}, BindType::STATICMETHOD); vm->bind__repr__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj){ PyVec2& self = _CAST(PyVec2&, obj); std::stringstream ss; ss << std::fixed << std::setprecision(3); ss << "vec2(" << self.x << ", " << self.y << ")"; return VAR(ss.str()); }); vm->bind_method<1>(type, "rotate", [](VM* vm, ArgsView args){ Vec2 self = _CAST(PyVec2&, args[0]); float radian = CAST(f64, args[1]); return VAR_T(PyVec2, self.rotate(radian)); }); vm->bind_method<1>(type, "rotate_", [](VM* vm, ArgsView args){ PyVec2& self = _CAST(PyVec2&, args[0]); float radian = CAST(f64, args[1]); self = self.rotate(radian); return vm->None; }); PY_FIELD(PyVec2, "x", _, x) PY_FIELD(PyVec2, "y", _, y) BIND_VEC_VEC_OP(2, __add__, +) BIND_VEC_VEC_OP(2, __sub__, -) BIND_VEC_FLOAT_OP(2, __mul__, *) BIND_VEC_FLOAT_OP(2, __rmul__, *) BIND_VEC_FLOAT_OP(2, __truediv__, /) BIND_VEC_FUNCTION_1(2, dot) BIND_VEC_FUNCTION_1(2, cross) BIND_VEC_FUNCTION_1(2, copy_) BIND_VEC_FUNCTION_0(2, length) BIND_VEC_FUNCTION_0(2, length_squared) BIND_VEC_FUNCTION_0(2, normalize) BIND_VEC_FUNCTION_0(2, normalize_) } void PyVec3::_register(VM* vm, PyObject* mod, PyObject* type){ PY_STRUCT_LIKE(PyVec3) vm->bind_constructor<4>(type, [](VM* vm, ArgsView args){ float x = CAST_F(args[1]); float y = CAST_F(args[2]); float z = CAST_F(args[3]); return vm->heap.gcnew(PK_OBJ_GET(Type, args[0]), Vec3(x, y, z)); }); vm->bind__repr__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj){ PyVec3& self = _CAST(PyVec3&, obj); std::stringstream ss; ss << std::fixed << std::setprecision(3); ss << "vec3(" << self.x << ", " << self.y << ", " << self.z << ")"; return VAR(ss.str()); }); PY_FIELD(PyVec3, "x", _, x) PY_FIELD(PyVec3, "y", _, y) PY_FIELD(PyVec3, "z", _, z) BIND_VEC_VEC_OP(3, __add__, +) BIND_VEC_VEC_OP(3, __sub__, -) BIND_VEC_FLOAT_OP(3, __mul__, *) BIND_VEC_FLOAT_OP(3, __rmul__, *) BIND_VEC_FLOAT_OP(3, __truediv__, /) BIND_VEC_FUNCTION_1(3, dot) BIND_VEC_FUNCTION_1(3, cross) BIND_VEC_FUNCTION_1(3, copy_) BIND_VEC_FUNCTION_0(3, length) BIND_VEC_FUNCTION_0(3, length_squared) BIND_VEC_FUNCTION_0(3, normalize) BIND_VEC_FUNCTION_0(3, normalize_) } void PyVec4::_register(VM* vm, PyObject* mod, PyObject* type){ PY_STRUCT_LIKE(PyVec4) vm->bind_constructor<1+4>(type, [](VM* vm, ArgsView args){ float x = CAST_F(args[1]); float y = CAST_F(args[2]); float z = CAST_F(args[3]); float w = CAST_F(args[4]); return vm->heap.gcnew(PK_OBJ_GET(Type, args[0]), Vec4(x, y, z, w)); }); vm->bind__repr__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj){ PyVec4& self = _CAST(PyVec4&, obj); std::stringstream ss; ss << std::fixed << std::setprecision(3); ss << "vec4(" << self.x << ", " << self.y << ", " << self.z << ", " << self.w << ")"; return VAR(ss.str()); }); PY_FIELD(PyVec4, "x", _, x) PY_FIELD(PyVec4, "y", _, y) PY_FIELD(PyVec4, "z", _, z) PY_FIELD(PyVec4, "w", _, w) BIND_VEC_VEC_OP(4, __add__, +) BIND_VEC_VEC_OP(4, __sub__, -) BIND_VEC_FLOAT_OP(4, __mul__, *) BIND_VEC_FLOAT_OP(4, __rmul__, *) BIND_VEC_FLOAT_OP(4, __truediv__, /) BIND_VEC_FUNCTION_1(4, dot) BIND_VEC_FUNCTION_1(4, copy_) BIND_VEC_FUNCTION_0(4, length) BIND_VEC_FUNCTION_0(4, length_squared) BIND_VEC_FUNCTION_0(4, normalize) BIND_VEC_FUNCTION_0(4, normalize_) } #undef BIND_VEC_VEC_OP #undef BIND_VEC_FLOAT_OP #undef BIND_VEC_FUNCTION_0 #undef BIND_VEC_FUNCTION_1 void PyMat3x3::_register(VM* vm, PyObject* mod, PyObject* type){ PY_STRUCT_LIKE(PyMat3x3) vm->bind_constructor<-1>(type, [](VM* vm, ArgsView args){ if(args.size() == 1+0) return vm->heap.gcnew(PK_OBJ_GET(Type, args[0]), Mat3x3::zeros()); if(args.size() == 1+1){ const List& list = CAST(List&, args[1]); if(list.size() != 9) vm->TypeError("Mat3x3.__new__ takes a list of 9 floats"); Mat3x3 mat; for(int i=0; i<9; i++) mat.v[i] = CAST_F(list[i]); return vm->heap.gcnew(PK_OBJ_GET(Type, args[0]), mat); } if(args.size() == 1+9){ Mat3x3 mat; for(int i=0; i<9; i++) mat.v[i] = CAST_F(args[1+i]); return vm->heap.gcnew(PK_OBJ_GET(Type, args[0]), mat); } vm->TypeError(fmt("Mat3x3.__new__ takes 0 or 1 or 9 arguments, got ", args.size()-1)); PK_UNREACHABLE(); }); vm->bind_method<1>(type, "copy_", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); const PyMat3x3& other = CAST(PyMat3x3&, args[1]); self = other; return vm->None; }); vm->bind__repr__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj){ PyMat3x3& self = _CAST(PyMat3x3&, obj); std::stringstream ss; ss << std::fixed << std::setprecision(3); ss << "mat3x3([" << self._11 << ", " << self._12 << ", " << self._13 << ",\n"; ss << " " << self._21 << ", " << self._22 << ", " << self._23 << ",\n"; ss << " " << self._31 << ", " << self._32 << ", " << self._33 << "])"; return VAR(ss.str()); }); vm->bind__getitem__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj, PyObject* index){ PyMat3x3& self = _CAST(PyMat3x3&, obj); Tuple& t = CAST(Tuple&, index); if(t.size() != 2){ vm->TypeError("Mat3x3.__getitem__ takes a tuple of 2 integers"); } i64 i = CAST(i64, t[0]); i64 j = CAST(i64, t[1]); if(i < 0 || i >= 3 || j < 0 || j >= 3){ vm->IndexError("index out of range"); } return VAR(self.m[i][j]); }); vm->bind__setitem__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj, PyObject* index, PyObject* value){ PyMat3x3& self = _CAST(PyMat3x3&, obj); const Tuple& t = CAST(Tuple&, index); if(t.size() != 2){ vm->TypeError("Mat3x3.__setitem__ takes a tuple of 2 integers"); } i64 i = CAST(i64, t[0]); i64 j = CAST(i64, t[1]); if(i < 0 || i >= 3 || j < 0 || j >= 3){ vm->IndexError("index out of range"); } self.m[i][j] = CAST_F(value); }); PY_FIELD(PyMat3x3, "_11", _, _11) PY_FIELD(PyMat3x3, "_12", _, _12) PY_FIELD(PyMat3x3, "_13", _, _13) PY_FIELD(PyMat3x3, "_21", _, _21) PY_FIELD(PyMat3x3, "_22", _, _22) PY_FIELD(PyMat3x3, "_23", _, _23) PY_FIELD(PyMat3x3, "_31", _, _31) PY_FIELD(PyMat3x3, "_32", _, _32) PY_FIELD(PyMat3x3, "_33", _, _33) vm->bind__add__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* _0, PyObject* _1){ PyMat3x3& self = _CAST(PyMat3x3&, _0); PyMat3x3& other = CAST(PyMat3x3&, _1); return VAR_T(PyMat3x3, self + other); }); vm->bind__sub__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* _0, PyObject* _1){ PyMat3x3& self = _CAST(PyMat3x3&, _0); PyMat3x3& other = CAST(PyMat3x3&, _1); return VAR_T(PyMat3x3, self - other); }); vm->bind__mul__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* _0, PyObject* _1){ PyMat3x3& self = _CAST(PyMat3x3&, _0); f64 other = CAST_F(_1); return VAR_T(PyMat3x3, self * other); }); vm->bind_method<1>(type, "__rmul__", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); f64 other = CAST_F(args[1]); return VAR_T(PyMat3x3, self * other); }); vm->bind__truediv__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* _0, PyObject* _1){ PyMat3x3& self = _CAST(PyMat3x3&, _0); f64 other = CAST_F(_1); return VAR_T(PyMat3x3, self / other); }); vm->bind__matmul__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* _0, PyObject* _1){ PyMat3x3& self = _CAST(PyMat3x3&, _0); if(is_non_tagged_type(_1, PyMat3x3::_type(vm))){ const PyMat3x3& other = _CAST(PyMat3x3&, _1); return VAR_T(PyMat3x3, self.matmul(other)); } if(is_non_tagged_type(_1, PyVec3::_type(vm))){ const PyVec3& other = _CAST(PyVec3&, _1); return VAR_T(PyVec3, self.matmul(other)); } return vm->NotImplemented; }); vm->bind(type, "matmul(self, other: mat3x3, out: mat3x3 = None)", [](VM* vm, ArgsView args){ const PyMat3x3& self = _CAST(PyMat3x3&, args[0]); const PyMat3x3& other = CAST(PyMat3x3&, args[1]); if(args[2] == vm->None){ return VAR_T(PyMat3x3, self.matmul(other)); }else{ PyMat3x3& out = CAST(PyMat3x3&, args[2]); out = self.matmul(other); return vm->None; } }); vm->bind_method<0>(type, "determinant", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); return VAR(self.determinant()); }); vm->bind_method<0>(type, "transpose", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); return VAR_T(PyMat3x3, self.transpose()); }); vm->bind__invert__(PK_OBJ_GET(Type, type), [](VM* vm, PyObject* obj){ PyMat3x3& self = _CAST(PyMat3x3&, obj); Mat3x3 ret; bool ok = self.inverse(ret); if(!ok) vm->ValueError("matrix is not invertible"); return VAR_T(PyMat3x3, ret); }); vm->bind_method<0>(type, "invert", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); Mat3x3 ret; bool ok = self.inverse(ret); if(!ok) vm->ValueError("matrix is not invertible"); return VAR_T(PyMat3x3, ret); }); vm->bind_method<0>(type, "invert_", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); Mat3x3 ret; bool ok = self.inverse(ret); if(!ok) vm->ValueError("matrix is not invertible"); self = ret; return vm->None; }); vm->bind_method<0>(type, "transpose_", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); self = self.transpose(); return vm->None; }); // @staticmethod vm->bind(type, "zeros()", [](VM* vm, ArgsView args){ PK_UNUSED(args); return VAR_T(PyMat3x3, Mat3x3::zeros()); }, {}, BindType::STATICMETHOD); // @staticmethod vm->bind(type, "ones()", [](VM* vm, ArgsView args){ PK_UNUSED(args); return VAR_T(PyMat3x3, Mat3x3::ones()); }, {}, BindType::STATICMETHOD); // @staticmethod vm->bind(type, "identity()", [](VM* vm, ArgsView args){ PK_UNUSED(args); return VAR_T(PyMat3x3, Mat3x3::identity()); }, {}, BindType::STATICMETHOD); /*************** affine transformations ***************/ // @staticmethod vm->bind(type, "trs(t: vec2, r: float, s: vec2)", [](VM* vm, ArgsView args){ Vec2 t = CAST(Vec2, args[0]); f64 r = CAST_F(args[1]); Vec2 s = CAST(Vec2, args[2]); return VAR_T(PyMat3x3, Mat3x3::trs(t, r, s)); }, {}, BindType::STATICMETHOD); vm->bind(type, "copy_trs_(self, t: vec2, r: float, s: vec2)", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); Vec2 t = CAST(Vec2, args[1]); f64 r = CAST_F(args[2]); Vec2 s = CAST(Vec2, args[3]); self = Mat3x3::trs(t, r, s); return vm->None; }); vm->bind_method<0>(type, "is_affine", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); return VAR(self.is_affine()); }); vm->bind_method<0>(type, "_t", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); return VAR_T(PyVec2, self._t()); }); vm->bind_method<0>(type, "_r", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); return VAR(self._r()); }); vm->bind_method<0>(type, "_s", [](VM* vm, ArgsView args){ PyMat3x3& self = _CAST(PyMat3x3&, args[0]); return VAR_T(PyVec2, self._s()); }); vm->bind_method<1>(type, "transform_point", [](VM* vm, ArgsView args){ const PyMat3x3& self = _CAST(PyMat3x3&, args[0]); Vec2 v = CAST(Vec2, args[1]); Vec2 res = Vec2(self._11 * v.x + self._12 * v.y + self._13, self._21 * v.x + self._22 * v.y + self._23); return VAR_T(PyVec2, res); }); vm->bind_method<1>(type, "transform_vector", [](VM* vm, ArgsView args){ const PyMat3x3& self = _CAST(PyMat3x3&, args[0]); Vec2 v = CAST(Vec2, args[1]); Vec2 res = Vec2(self._11 * v.x + self._12 * v.y, self._21 * v.x + self._22 * v.y); return VAR_T(PyVec2, res); }); } void add_module_linalg(VM* vm){ PyObject* linalg = vm->new_module("linalg"); PyVec2::register_class(vm, linalg); PyVec3::register_class(vm, linalg); PyVec4::register_class(vm, linalg); PyMat3x3::register_class(vm, linalg); PyObject* float_p = vm->_modules["c"]->attr("float_p"); linalg->attr().set("vec2_p", float_p); linalg->attr().set("vec3_p", float_p); linalg->attr().set("vec4_p", float_p); linalg->attr().set("mat3x3_p", float_p); } /////////////// mat3x3 /////////////// Mat3x3::Mat3x3() {} Mat3x3::Mat3x3(float _11, float _12, float _13, float _21, float _22, float _23, float _31, float _32, float _33) : _11(_11), _12(_12), _13(_13) , _21(_21), _22(_22), _23(_23) , _31(_31), _32(_32), _33(_33) {} Mat3x3 Mat3x3::zeros(){ return Mat3x3(0, 0, 0, 0, 0, 0, 0, 0, 0); } Mat3x3 Mat3x3::ones(){ return Mat3x3(1, 1, 1, 1, 1, 1, 1, 1, 1); } Mat3x3 Mat3x3::identity(){ return Mat3x3(1, 0, 0, 0, 1, 0, 0, 0, 1); } Mat3x3 Mat3x3::operator+(const Mat3x3& other) const{ Mat3x3 ret; for (int i=0; i<9; ++i) ret.v[i] = v[i] + other.v[i]; return ret; } Mat3x3 Mat3x3::operator-(const Mat3x3& other) const{ Mat3x3 ret; for (int i=0; i<9; ++i) ret.v[i] = v[i] - other.v[i]; return ret; } Mat3x3 Mat3x3::operator*(float scalar) const{ Mat3x3 ret; for (int i=0; i<9; ++i) ret.v[i] = v[i] * scalar; return ret; } Mat3x3 Mat3x3::operator/(float scalar) const{ Mat3x3 ret; for (int i=0; i<9; ++i) ret.v[i] = v[i] / scalar; return ret; } bool Mat3x3::operator==(const Mat3x3& other) const{ for (int i=0; i<9; ++i){ if (!isclose(v[i], other.v[i])) return false; } return true; } bool Mat3x3::operator!=(const Mat3x3& other) const{ for (int i=0; i<9; ++i){ if (!isclose(v[i], other.v[i])) return true; } return false; } Mat3x3 Mat3x3::matmul(const Mat3x3& other) const{ Mat3x3 out; out._11 = _11 * other._11 + _12 * other._21 + _13 * other._31; out._12 = _11 * other._12 + _12 * other._22 + _13 * other._32; out._13 = _11 * other._13 + _12 * other._23 + _13 * other._33; out._21 = _21 * other._11 + _22 * other._21 + _23 * other._31; out._22 = _21 * other._12 + _22 * other._22 + _23 * other._32; out._23 = _21 * other._13 + _22 * other._23 + _23 * other._33; out._31 = _31 * other._11 + _32 * other._21 + _33 * other._31; out._32 = _31 * other._12 + _32 * other._22 + _33 * other._32; out._33 = _31 * other._13 + _32 * other._23 + _33 * other._33; return out; } Vec3 Mat3x3::matmul(const Vec3& other) const{ Vec3 out; out.x = _11 * other.x + _12 * other.y + _13 * other.z; out.y = _21 * other.x + _22 * other.y + _23 * other.z; out.z = _31 * other.x + _32 * other.y + _33 * other.z; return out; } float Mat3x3::determinant() const{ return _11 * _22 * _33 + _12 * _23 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 - _13 * _22 * _31; } Mat3x3 Mat3x3::transpose() const{ Mat3x3 ret; ret._11 = _11; ret._12 = _21; ret._13 = _31; ret._21 = _12; ret._22 = _22; ret._23 = _32; ret._31 = _13; ret._32 = _23; ret._33 = _33; return ret; } bool Mat3x3::inverse(Mat3x3& out) const{ float det = determinant(); if (isclose(det, 0)) return false; float inv_det = 1.0f / det; out._11 = (_22 * _33 - _23 * _32) * inv_det; out._12 = (_13 * _32 - _12 * _33) * inv_det; out._13 = (_12 * _23 - _13 * _22) * inv_det; out._21 = (_23 * _31 - _21 * _33) * inv_det; out._22 = (_11 * _33 - _13 * _31) * inv_det; out._23 = (_13 * _21 - _11 * _23) * inv_det; out._31 = (_21 * _32 - _22 * _31) * inv_det; out._32 = (_12 * _31 - _11 * _32) * inv_det; out._33 = (_11 * _22 - _12 * _21) * inv_det; return true; } Mat3x3 Mat3x3::trs(Vec2 t, float radian, Vec2 s){ float cr = cosf(radian); float sr = sinf(radian); return Mat3x3(s.x * cr, -s.y * sr, t.x, s.x * sr, s.y * cr, t.y, 0.0f, 0.0f, 1.0f); } bool Mat3x3::is_affine() const{ float det = _11 * _22 - _12 * _21; if(isclose(det, 0)) return false; return _31 == 0.0f && _32 == 0.0f && _33 == 1.0f; } Vec2 Mat3x3::_t() const { return Vec2(_13, _23); } float Mat3x3::_r() const { return atan2f(_21, _11); } Vec2 Mat3x3::_s() const { return Vec2( sqrtf(_11 * _11 + _21 * _21), sqrtf(_12 * _12 + _22 * _22) ); } } // namespace pkpy