// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "box2d/b2_polygon_shape.h" #include "box2d/b2_block_allocator.h" #include b2PolygonShape::b2PolygonShape() { m_type = e_polygon; m_radius = b2_polygonRadius; m_count = 0; m_centroid.SetZero(); } b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const { void* mem = allocator->Allocate(sizeof(b2PolygonShape)); b2PolygonShape* clone = new (mem) b2PolygonShape; *clone = *this; return clone; } void b2PolygonShape::SetAsBox(float hx, float hy) { m_count = 4; m_vertices[0].Set(-hx, -hy); m_vertices[1].Set( hx, -hy); m_vertices[2].Set( hx, hy); m_vertices[3].Set(-hx, hy); m_normals[0].Set(0.0f, -1.0f); m_normals[1].Set(1.0f, 0.0f); m_normals[2].Set(0.0f, 1.0f); m_normals[3].Set(-1.0f, 0.0f); m_centroid.SetZero(); } void b2PolygonShape::SetAsBox(float hx, float hy, const b2Vec2& center, float angle) { m_count = 4; m_vertices[0].Set(-hx, -hy); m_vertices[1].Set( hx, -hy); m_vertices[2].Set( hx, hy); m_vertices[3].Set(-hx, hy); m_normals[0].Set(0.0f, -1.0f); m_normals[1].Set(1.0f, 0.0f); m_normals[2].Set(0.0f, 1.0f); m_normals[3].Set(-1.0f, 0.0f); m_centroid = center; b2Transform xf; xf.p = center; xf.q.Set(angle); // Transform vertices and normals. for (int32 i = 0; i < m_count; ++i) { m_vertices[i] = b2Mul(xf, m_vertices[i]); m_normals[i] = b2Mul(xf.q, m_normals[i]); } } int32 b2PolygonShape::GetChildCount() const { return 1; } static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) { b2Assert(count >= 3); b2Vec2 c(0.0f, 0.0f); float area = 0.0f; // Get a reference point for forming triangles. // Use the first vertex to reduce round-off errors. b2Vec2 s = vs[0]; const float inv3 = 1.0f / 3.0f; for (int32 i = 0; i < count; ++i) { // Triangle vertices. b2Vec2 p1 = vs[0] - s; b2Vec2 p2 = vs[i] - s; b2Vec2 p3 = i + 1 < count ? vs[i+1] - s : vs[0] - s; b2Vec2 e1 = p2 - p1; b2Vec2 e2 = p3 - p1; float D = b2Cross(e1, e2); float triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid c += triangleArea * inv3 * (p1 + p2 + p3); } // Centroid b2Assert(area > b2_epsilon); c = (1.0f / area) * c + s; return c; } bool b2PolygonShape::Set(const b2Vec2* vertices, int32 count) { b2Hull hull = b2ComputeHull(vertices, count); if (hull.count < 3) { return false; } Set(hull); return true; } void b2PolygonShape::Set(const b2Hull& hull) { b2Assert(hull.count >= 3); m_count = hull.count; // Copy vertices for (int32 i = 0; i < hull.count; ++i) { m_vertices[i] = hull.points[i]; } // Compute normals. Ensure the edges have non-zero length. for (int32 i = 0; i < m_count; ++i) { int32 i1 = i; int32 i2 = i + 1 < m_count ? i + 1 : 0; b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); m_normals[i] = b2Cross(edge, 1.0f); m_normals[i].Normalize(); } // Compute the polygon centroid. m_centroid = ComputeCentroid(m_vertices, m_count); } bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const { b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); for (int32 i = 0; i < m_count; ++i) { float dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); if (dot > 0.0f) { return false; } } return true; } bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, const b2Transform& xf, int32 childIndex) const { B2_NOT_USED(childIndex); // Put the ray into the polygon's frame of reference. b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); b2Vec2 d = p2 - p1; float lower = 0.0f, upper = input.maxFraction; int32 index = -1; for (int32 i = 0; i < m_count; ++i) { // p = p1 + a * d // dot(normal, p - v) = 0 // dot(normal, p1 - v) + a * dot(normal, d) = 0 float numerator = b2Dot(m_normals[i], m_vertices[i] - p1); float denominator = b2Dot(m_normals[i], d); if (denominator == 0.0f) { if (numerator < 0.0f) { return false; } } else { // Note: we want this predicate without division: // lower < numerator / denominator, where denominator < 0 // Since denominator < 0, we have to flip the inequality: // lower < numerator / denominator <==> denominator * lower > numerator. if (denominator < 0.0f && numerator < lower * denominator) { // Increase lower. // The segment enters this half-space. lower = numerator / denominator; index = i; } else if (denominator > 0.0f && numerator < upper * denominator) { // Decrease upper. // The segment exits this half-space. upper = numerator / denominator; } } // The use of epsilon here causes the assert on lower to trip // in some cases. Apparently the use of epsilon was to make edge // shapes work, but now those are handled separately. //if (upper < lower - b2_epsilon) if (upper < lower) { return false; } } b2Assert(0.0f <= lower && lower <= input.maxFraction); if (index >= 0) { output->fraction = lower; output->normal = b2Mul(xf.q, m_normals[index]); return true; } return false; } void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const { B2_NOT_USED(childIndex); b2Vec2 lower = b2Mul(xf, m_vertices[0]); b2Vec2 upper = lower; for (int32 i = 1; i < m_count; ++i) { b2Vec2 v = b2Mul(xf, m_vertices[i]); lower = b2Min(lower, v); upper = b2Max(upper, v); } b2Vec2 r(m_radius, m_radius); aabb->lowerBound = lower - r; aabb->upperBound = upper + r; } void b2PolygonShape::ComputeMass(b2MassData* massData, float density) const { // Polygon mass, centroid, and inertia. // Let rho be the polygon density in mass per unit area. // Then: // mass = rho * int(dA) // centroid.x = (1/mass) * rho * int(x * dA) // centroid.y = (1/mass) * rho * int(y * dA) // I = rho * int((x*x + y*y) * dA) // // We can compute these integrals by summing all the integrals // for each triangle of the polygon. To evaluate the integral // for a single triangle, we make a change of variables to // the (u,v) coordinates of the triangle: // x = x0 + e1x * u + e2x * v // y = y0 + e1y * u + e2y * v // where 0 <= u && 0 <= v && u + v <= 1. // // We integrate u from [0,1-v] and then v from [0,1]. // We also need to use the Jacobian of the transformation: // D = cross(e1, e2) // // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3) // // The rest of the derivation is handled by computer algebra. b2Assert(m_count >= 3); b2Vec2 center(0.0f, 0.0f); float area = 0.0f; float I = 0.0f; // Get a reference point for forming triangles. // Use the first vertex to reduce round-off errors. b2Vec2 s = m_vertices[0]; const float k_inv3 = 1.0f / 3.0f; for (int32 i = 0; i < m_count; ++i) { // Triangle vertices. b2Vec2 e1 = m_vertices[i] - s; b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; float D = b2Cross(e1, e2); float triangleArea = 0.5f * D; area += triangleArea; // Area weighted centroid center += triangleArea * k_inv3 * (e1 + e2); float ex1 = e1.x, ey1 = e1.y; float ex2 = e2.x, ey2 = e2.y; float intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; float inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; I += (0.25f * k_inv3 * D) * (intx2 + inty2); } // Total mass massData->mass = density * area; // Center of mass b2Assert(area > b2_epsilon); center *= 1.0f / area; massData->center = center + s; // Inertia tensor relative to the local origin (point s). massData->I = density * I; // Shift to center of mass then to original body origin. massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); } bool b2PolygonShape::Validate() const { if (m_count < 3 || b2_maxPolygonVertices < m_count) { return false; } b2Hull hull; for (int32 i = 0; i < m_count; ++i) { hull.points[i] = m_vertices[i]; } hull.count = m_count; return b2ValidateHull(hull); }