// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include "box2d/b2_body.h" #include "box2d/b2_time_step.h" #include "box2d/b2_weld_joint.h" // Point-to-point constraint // C = p2 - p1 // Cdot = v2 - v1 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) // J = [-I -r1_skew I r2_skew ] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) // Angle constraint // C = angle2 - angle1 - referenceAngle // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // K = invI1 + invI2 void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) { bodyA = bA; bodyB = bB; localAnchorA = bodyA->GetLocalPoint(anchor); localAnchorB = bodyB->GetLocalPoint(anchor); referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); } b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def) : b2Joint(def) { m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_referenceAngle = def->referenceAngle; m_stiffness = def->stiffness; m_damping = def->damping; m_impulse.SetZero(); } void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; float aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; float aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Mat33 K; K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; K.ez.x = -m_rA.y * iA - m_rB.y * iB; K.ex.y = K.ey.x; K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; K.ez.y = m_rA.x * iA + m_rB.x * iB; K.ex.z = K.ez.x; K.ey.z = K.ez.y; K.ez.z = iA + iB; if (m_stiffness > 0.0f) { K.GetInverse22(&m_mass); float invM = iA + iB; float C = aB - aA - m_referenceAngle; // Damping coefficient float d = m_damping; // Spring stiffness float k = m_stiffness; // magic formulas float h = data.step.dt; m_gamma = h * (d + h * k); m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; m_bias = C * h * k * m_gamma; invM += m_gamma; m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f; } else if (K.ez.z == 0.0f) { K.GetInverse22(&m_mass); m_gamma = 0.0f; m_bias = 0.0f; } else { K.GetSymInverse33(&m_mass); m_gamma = 0.0f; m_bias = 0.0f; } if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_impulse *= data.step.dtRatio; b2Vec2 P(m_impulse.x, m_impulse.y); vA -= mA * P; wA -= iA * (b2Cross(m_rA, P) + m_impulse.z); vB += mB * P; wB += iB * (b2Cross(m_rB, P) + m_impulse.z); } else { m_impulse.SetZero(); } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; if (m_stiffness > 0.0f) { float Cdot2 = wB - wA; float impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z); m_impulse.z += impulse2; wA -= iA * impulse2; wB += iB * impulse2; b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1); m_impulse.x += impulse1.x; m_impulse.y += impulse1.y; b2Vec2 P = impulse1; vA -= mA * P; wA -= iA * b2Cross(m_rA, P); vB += mB * P; wB += iB * b2Cross(m_rB, P); } else { b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); float Cdot2 = wB - wA; b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); b2Vec3 impulse = -b2Mul(m_mass, Cdot); m_impulse += impulse; b2Vec2 P(impulse.x, impulse.y); vA -= mA * P; wA -= iA * (b2Cross(m_rA, P) + impulse.z); vB += mB * P; wB += iB * (b2Cross(m_rB, P) + impulse.z); } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; b2Rot qA(aA), qB(aB); float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); float positionError, angularError; b2Mat33 K; K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB; K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB; K.ez.x = -rA.y * iA - rB.y * iB; K.ex.y = K.ey.x; K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB; K.ez.y = rA.x * iA + rB.x * iB; K.ex.z = K.ez.x; K.ey.z = K.ez.y; K.ez.z = iA + iB; if (m_stiffness > 0.0f) { b2Vec2 C1 = cB + rB - cA - rA; positionError = C1.Length(); angularError = 0.0f; b2Vec2 P = -K.Solve22(C1); cA -= mA * P; aA -= iA * b2Cross(rA, P); cB += mB * P; aB += iB * b2Cross(rB, P); } else { b2Vec2 C1 = cB + rB - cA - rA; float C2 = aB - aA - m_referenceAngle; positionError = C1.Length(); angularError = b2Abs(C2); b2Vec3 C(C1.x, C1.y, C2); b2Vec3 impulse; if (K.ez.z > 0.0f) { impulse = -K.Solve33(C); } else { b2Vec2 impulse2 = -K.Solve22(C1); impulse.Set(impulse2.x, impulse2.y, 0.0f); } b2Vec2 P(impulse.x, impulse.y); cA -= mA * P; aA -= iA * (b2Cross(rA, P) + impulse.z); cB += mB * P; aB += iB * (b2Cross(rB, P) + impulse.z); } data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return positionError <= b2_linearSlop && angularError <= b2_angularSlop; } b2Vec2 b2WeldJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2WeldJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2WeldJoint::GetReactionForce(float inv_dt) const { b2Vec2 P(m_impulse.x, m_impulse.y); return inv_dt * P; } float b2WeldJoint::GetReactionTorque(float inv_dt) const { return inv_dt * m_impulse.z; } void b2WeldJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Dump(" b2WeldJointDef jd;\n"); b2Dump(" jd.bodyA = bodies[%d];\n", indexA); b2Dump(" jd.bodyB = bodies[%d];\n", indexB); b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y); b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y); b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle); b2Dump(" jd.stiffness = %.9g;\n", m_stiffness); b2Dump(" jd.damping = %.9g;\n", m_damping); b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }