#include "pocketpy/vm.h" static const char* OP_NAMES[] = { #define OPCODE(name) #name, #include "pocketpy/opcodes.h" #undef OPCODE }; namespace pkpy{ struct JsonSerializer{ VM* vm; PyVar root; SStream ss; JsonSerializer(VM* vm, PyVar root) : vm(vm), root(root) {} template void write_array(T& arr){ ss << '['; for(int i=0; iTypeError(_S("json keys must be string, got ", _type_name(vm, vm->_tp(k)))); } ss << _CAST(Str&, k).escape(false) << ": "; write_object(v); }); ss << '}'; } void write_object(PyVar obj){ Type obj_t = vm->_tp(obj); if(obj == vm->None){ ss << "null"; }else if(obj_t == vm->tp_int){ ss << _CAST(i64, obj); }else if(obj_t == vm->tp_float){ f64 val = _CAST(f64, obj); if(std::isinf(val) || std::isnan(val)) vm->ValueError("cannot jsonify 'nan' or 'inf'"); ss << val; }else if(obj_t == vm->tp_bool){ ss << (obj == vm->True ? "true" : "false"); }else if(obj_t == vm->tp_str){ _CAST(Str&, obj).escape_(ss, false); }else if(obj_t == vm->tp_list){ write_array(_CAST(List&, obj)); }else if(obj_t == vm->tp_tuple){ write_array(_CAST(Tuple&, obj)); }else if(obj_t == vm->tp_dict){ write_dict(_CAST(Dict&, obj)); }else{ vm->TypeError(_S("unrecognized type ", _type_name(vm, obj_t).escape())); } } Str serialize(){ auto _lock = vm->heap.gc_scope_lock(); write_object(root); return ss.str(); } }; VM::VM(bool enable_os) : heap(this), enable_os(enable_os) { this->vm = this; this->__c.error = nullptr; _ceval_on_step = nullptr; _stdout = [](const char* buf, int size) { std::cout.write(buf, size); }; _stderr = [](const char* buf, int size) { std::cerr.write(buf, size); }; _main = nullptr; __last_exception = nullptr; _import_handler = [](const char* name, int* out_size) -> unsigned char*{ return nullptr; }; __init_builtin_types(); } Str VM::py_str(PyVar obj){ const PyTypeInfo* ti = _tp_info(obj); if(ti->m__str__) return ti->m__str__(this, obj); PyVar self; PyVar f = get_unbound_method(obj, __str__, &self, false); if(self != PY_NULL){ PyVar retval = call_method(self, f); if(!is_type(retval, tp_str)){ throw std::runtime_error("object.__str__ must return str"); } return PK_OBJ_GET(Str, retval); } return py_repr(obj); } Str VM::py_repr(PyVar obj){ const PyTypeInfo* ti = _tp_info(obj); if(ti->m__repr__) return ti->m__repr__(this, obj); PyVar retval = call_method(obj, __repr__); if(!is_type(retval, tp_str)){ throw std::runtime_error("object.__repr__ must return str"); } return PK_OBJ_GET(Str, retval); } Str VM::py_json(PyVar obj){ auto j = JsonSerializer(this, obj); return j.serialize(); } PyVar VM::py_iter(PyVar obj){ const PyTypeInfo* ti = _tp_info(obj); if(ti->m__iter__) return ti->m__iter__(this, obj); PyVar self; PyVar iter_f = get_unbound_method(obj, __iter__, &self, false); if(self != PY_NULL) return call_method(self, iter_f); TypeError(_type_name(vm, _tp(obj)).escape() + " object is not iterable"); return nullptr; } ArgsView VM::cast_array_view(PyVar obj){ if(is_type(obj, VM::tp_list)){ List& list = PK_OBJ_GET(List, obj); return ArgsView(list.begin(), list.end()); }else if(is_type(obj, VM::tp_tuple)){ Tuple& tuple = PK_OBJ_GET(Tuple, obj); return ArgsView(tuple.begin(), tuple.end()); } TypeError(_S("expected list or tuple, got ", _type_name(this, _tp(obj)).escape())); PK_UNREACHABLE(); } void VM::set_main_argv(int argc, char** argv){ PyVar mod = vm->_modules["sys"]; List argv_(argc); for(int i=0; iattr().set("argv", VAR(std::move(argv_))); } PyVar VM::find_name_in_mro(Type cls, StrName name){ PyVar val; do{ val = _t(cls)->attr().try_get(name); if(val != nullptr) return val; cls = _all_types[cls].base; if(cls.index == -1) break; }while(true); return nullptr; } bool VM::isinstance(PyVar obj, Type base){ return issubclass(_tp(obj), base); } bool VM::issubclass(Type cls, Type base){ do{ if(cls == base) return true; Type next = _all_types[cls].base; if(next.index == -1) break; cls = next; }while(true); return false; } PyVar VM::exec(std::string_view source, Str filename, CompileMode mode, PyVar _module){ if(_module == nullptr) _module = _main; try { #if PK_DEBUG_PRECOMPILED_EXEC == 1 Str precompiled = vm->precompile(source, filename, mode); source = precompiled.sv(); #endif CodeObject_ code = compile(source, filename, mode); return _exec(code, _module); }catch (const Exception& e){ stderr_write(e.summary() + "\n"); } catch(const std::exception& e) { Str msg = "An std::exception occurred! It could be a bug.\n"; msg = msg + e.what() + "\n"; stderr_write(msg); } catch(NeedMoreLines){ throw; } catch(...) { Str msg = "An unknown exception occurred! It could be a bug. Please report it to @blueloveTH on GitHub.\n"; stderr_write(msg); } callstack.clear(); s_data.clear(); return nullptr; } PyVar VM::exec(std::string_view source){ return exec(source, "main.py", EXEC_MODE); } PyVar VM::eval(std::string_view source){ return exec(source, "", EVAL_MODE); } PyVar VM::new_type_object(PyVar mod, StrName name, Type base, bool subclass_enabled){ PyVar obj = heap._new(tp_type, Type(_all_types.size())); const PyTypeInfo& base_info = _all_types[base]; if(!base_info.subclass_enabled){ Str error = _S("type ", base_info.name.escape(), " is not `subclass_enabled`"); throw std::runtime_error(error.c_str()); } PyTypeInfo info{ obj, base, mod, name, subclass_enabled, }; _all_types.push_back(info); return obj; } bool VM::py_eq(PyVar lhs, PyVar rhs){ if(lhs == rhs) return true; const PyTypeInfo* ti = _tp_info(lhs); PyVar res; if(ti->m__eq__){ res = ti->m__eq__(this, lhs, rhs); if(res != vm->NotImplemented) return res == vm->True; } res = call_method(lhs, __eq__, rhs); if(res != vm->NotImplemented) return res == vm->True; ti = _tp_info(rhs); if(ti->m__eq__){ res = ti->m__eq__(this, rhs, lhs); if(res != vm->NotImplemented) return res == vm->True; } res = call_method(rhs, __eq__, lhs); if(res != vm->NotImplemented) return res == vm->True; return false; } PyVar VM::py_op(std::string_view name){ PyVar func; auto it = __cached_op_funcs.find(name); if(it == __cached_op_funcs.end()){ func = py_import("operator")->attr(StrName::get(name)); __cached_op_funcs[name] = func; }else{ func = it->second; } return func; } i64 VM::normalized_index(i64 index, int size){ if(index < 0) index += size; if(index < 0 || index >= size){ IndexError(std::to_string(index) + " not in [0, " + std::to_string(size) + ")"); } return index; } PyVar VM::_py_next(const PyTypeInfo* ti, PyVar obj){ if(ti->m__next__){ unsigned n = ti->m__next__(this, obj); return __pack_next_retval(n); } return call_method(obj, __next__); } PyVar VM::py_next(PyVar obj){ const PyTypeInfo* ti = _tp_info(obj); return _py_next(ti, obj); } bool VM::py_callable(PyVar obj){ Type cls = vm->_tp(obj); switch(cls.index){ case VM::tp_function.index: return vm->True; case VM::tp_native_func.index: return vm->True; case VM::tp_bound_method.index: return vm->True; case VM::tp_type.index: return vm->True; } return vm->find_name_in_mro(cls, __call__) != nullptr; } PyVar VM::__minmax_reduce(bool (VM::*op)(PyVar, PyVar), PyVar args, PyVar key){ auto _lock = heap.gc_scope_lock(); const Tuple& args_tuple = PK_OBJ_GET(Tuple, args); // from *args, it must be a tuple if(key==vm->None && args_tuple.size()==2){ // fast path PyVar a = args_tuple[0]; PyVar b = args_tuple[1]; return (this->*op)(a, b) ? a : b; } if(args_tuple.size() == 0) TypeError("expected at least 1 argument, got 0"); ArgsView view(nullptr, nullptr); if(args_tuple.size()==1){ view = cast_array_view(args_tuple[0]); }else{ view = ArgsView(args_tuple); } if(view.empty()) ValueError("arg is an empty sequence"); PyVar res = view[0]; if(key == vm->None){ for(int i=1; i*op)(view[i], res)) res = view[i]; } }else{ auto _lock = heap.gc_scope_lock(); for(int i=1; i*op)(a, b)) res = view[i]; } } return res; } PyVar VM::py_import(Str path, bool throw_err){ if(path.empty()) vm->ValueError("empty module name"); static auto f_join = [](const pod_vector& cpnts){ SStream ss; for(int i=0; i cpnts = curr_path.split('.'); int prefix = 0; // how many dots in the prefix for(int i=0; i cpnts.size()) ImportError("attempted relative import beyond top-level package"); path = path.substr(prefix); // remove prefix for(int i=(int)curr_is_init; i path_cpnts = path.split('.'); // check circular import if(__import_context.pending.size() > 128){ ImportError("maximum recursion depth exceeded while importing"); } // try import Str filename = path.replace('.', PK_PLATFORM_SEP) + ".py"; Str source; bool is_init = false; auto it = _lazy_modules.find(name); if(it == _lazy_modules.end()){ int out_size; unsigned char* out = _import_handler(filename.c_str(), &out_size); if(out == nullptr){ filename = path.replace('.', PK_PLATFORM_SEP).str() + PK_PLATFORM_SEP + "__init__.py"; is_init = true; out = _import_handler(filename.c_str(), &out_size); } if(out == nullptr){ if(throw_err) ImportError(_S("module ", path.escape(), " not found")); else return nullptr; } PK_ASSERT(out_size >= 0) source = Str(std::string_view((char*)out, out_size)); free(out); }else{ source = it->second; _lazy_modules.erase(it); } auto _ = __import_context.scope(path, is_init); CodeObject_ code = compile(source, filename, EXEC_MODE); Str name_cpnt = path_cpnts.back(); path_cpnts.pop_back(); PyVar new_mod = new_module(name_cpnt, f_join(path_cpnts)); _exec(code, new_mod); return new_mod; } VM::~VM() { callstack.clear(); s_data.clear(); _all_types.clear(); _modules.clear(); _lazy_modules.clear(); } PyVar VM::py_negate(PyVar obj){ const PyTypeInfo* ti = _tp_info(obj); if(ti->m__neg__) return ti->m__neg__(this, obj); return call_method(obj, __neg__); } bool VM::py_bool(PyVar obj){ if(obj == vm->True) return true; if(obj == vm->False) return false; if(obj == None) return false; if(is_int(obj)) return _CAST(i64, obj) != 0; if(is_float(obj)) return _CAST(f64, obj) != 0.0; PyVar self; PyVar len_f = get_unbound_method(obj, __len__, &self, false); if(self != PY_NULL){ PyVar ret = call_method(self, len_f); return CAST(i64, ret) > 0; } return true; } List VM::py_list(PyVar it){ auto _lock = heap.gc_scope_lock(); it = py_iter(it); List list; const PyTypeInfo* info = _tp_info(it); PyVar obj = _py_next(info, it); while(obj != StopIteration){ list.push_back(obj); obj = _py_next(info, it); } return list; } void VM::parse_int_slice(const Slice& s, int length, int& start, int& stop, int& step){ auto clip = [](int value, int min, int max){ if(value < min) return min; if(value > max) return max; return value; }; if(s.step == None) step = 1; else step = CAST(int, s.step); if(step == 0) ValueError("slice step cannot be zero"); if(step > 0){ if(s.start == None){ start = 0; }else{ start = CAST(int, s.start); if(start < 0) start += length; start = clip(start, 0, length); } if(s.stop == None){ stop = length; }else{ stop = CAST(int, s.stop); if(stop < 0) stop += length; stop = clip(stop, 0, length); } }else{ if(s.start == None){ start = length - 1; }else{ start = CAST(int, s.start); if(start < 0) start += length; start = clip(start, -1, length - 1); } if(s.stop == None){ stop = -1; }else{ stop = CAST(int, s.stop); if(stop < 0) stop += length; stop = clip(stop, -1, length - 1); } } } i64 VM::py_hash(PyVar obj){ // https://docs.python.org/3.10/reference/datamodel.html#object.__hash__ const PyTypeInfo* ti = _tp_info(obj); if(ti->m__hash__) return ti->m__hash__(this, obj); PyVar self; PyVar f = get_unbound_method(obj, __hash__, &self, false); if(f != nullptr){ PyVar ret = call_method(self, f); return CAST(i64, ret); } // if it is trivial `object`, return PK_BITS if(ti == &_all_types[tp_object]) return PK_BITS(obj); // otherwise, we check if it has a custom __eq__ other than object.__eq__ bool has_custom_eq = false; if(ti->m__eq__) has_custom_eq = true; else{ f = get_unbound_method(obj, __eq__, &self, false); has_custom_eq = f != _t(tp_object)->attr(__eq__); } if(has_custom_eq){ TypeError(_S("unhashable type: ", ti->name.escape())); PK_UNREACHABLE() }else{ return PK_BITS(obj); } } PyVar VM::__py_exec_internal(const CodeObject_& code, PyVar globals, PyVar locals){ Frame* frame = nullptr; if(!callstack.empty()) frame = &callstack.top(); // fast path if(frame && globals == vm->None && locals == vm->None){ return vm->_exec(code.get(), frame->_module, frame->_callable, frame->_locals); } auto _lock = heap.gc_scope_lock(); // for safety PyVar globals_obj = nullptr; Dict* globals_dict = nullptr; NameDict_ locals_closure = nullptr; Dict* locals_dict = nullptr; if(globals == vm->None){ globals_obj = frame ? frame->_module : _main; }else{ if(is_type(globals, VM::tp_mappingproxy)){ globals_obj = PK_OBJ_GET(MappingProxy, globals).obj; }else{ check_compatible_type(globals, VM::tp_dict); // make a temporary object and copy globals into it globals_obj = heap.gcnew(VM::tp_object); globals_obj->_enable_instance_dict(); globals_dict = &PK_OBJ_GET(Dict, globals); globals_dict->apply([&](PyVar k, PyVar v){ globals_obj->attr().set(CAST(Str&, k), v); }); } } PyVar retval = nullptr; if(locals == vm->None){ retval = vm->_exec(code, globals_obj); // only globals }else{ check_compatible_type(locals, VM::tp_dict); locals_dict = &PK_OBJ_GET(Dict, locals); locals_closure = std::make_shared(); locals_dict->apply([&](PyVar k, PyVar v){ locals_closure->set(CAST(Str&, k), v); }); PyVar _callable = VAR(Function(__dynamic_func_decl, globals_obj, nullptr, locals_closure)); retval = vm->_exec(code.get(), globals_obj, _callable, vm->s_data._sp); } if(globals_dict){ globals_dict->clear(); globals_obj->attr().apply([&](StrName k, PyVar v){ globals_dict->set(VAR(k.sv()), v); }); } if(locals_dict){ locals_dict->clear(); locals_closure->apply([&](StrName k, PyVar v){ locals_dict->set(VAR(k.sv()), v); }); } return retval; } void VM::py_exec(std::string_view source, PyVar globals, PyVar locals){ CodeObject_ code = vm->compile(source, "", EXEC_MODE, true); __py_exec_internal(code, globals, locals); } PyVar VM::py_eval(std::string_view source, PyVar globals, PyVar locals){ CodeObject_ code = vm->compile(source, "", EVAL_MODE, true); return __py_exec_internal(code, globals, locals); } PyVar VM::__format_object(PyVar obj, Str spec){ if(spec.empty()) return VAR(py_str(obj)); char type; switch(spec.end()[-1]){ case 'f': case 'd': case 's': type = spec.end()[-1]; spec = spec.substr(0, spec.length() - 1); break; default: type = ' '; break; } char pad_c = ' '; for(char c: std::string_view("0-=*#@!~")){ if(spec[0] == c){ pad_c = c; spec = spec.substr(1); break; } } char align; if(spec[0] == '^'){ align = '^'; spec = spec.substr(1); }else if(spec[0] == '>'){ align = '>'; spec = spec.substr(1); }else if(spec[0] == '<'){ align = '<'; spec = spec.substr(1); }else{ if(is_int(obj) || is_float(obj)) align = '>'; else align = '<'; } int dot = spec.index("."); int width, precision; try{ if(dot >= 0){ if(dot == 0){ width = -1; }else{ width = std::stoi(spec.substr(0, dot).str()); } precision = std::stoi(spec.substr(dot+1).str()); }else{ width = std::stoi(spec.str()); precision = -1; } }catch(...){ ValueError("invalid format specifer"); } if(type != 'f' && dot >= 0) ValueError("precision not allowed in the format specifier"); Str ret; if(type == 'f'){ f64 val = CAST(f64, obj); if(precision < 0) precision = 6; SStream ss; ss.setprecision(precision); ss << val; ret = ss.str(); }else if(type == 'd'){ ret = std::to_string(CAST(i64, obj)); }else if(type == 's'){ ret = CAST(Str&, obj); }else{ ret = py_str(obj); } if(width != -1 && width > ret.length()){ int pad = width - ret.length(); if(align == '>' || align == '<'){ std::string padding(pad, pad_c); if(align == '>') ret = padding.c_str() + ret; else ret = ret + padding.c_str(); }else{ // ^ int pad_left = pad / 2; int pad_right = pad - pad_left; std::string padding_left(pad_left, pad_c); std::string padding_right(pad_right, pad_c); ret = padding_left.c_str() + ret + padding_right.c_str(); } } return VAR(ret); } PyVar VM::new_module(Str name, Str package) { PyVar obj = heap._new(tp_module); obj->attr().set(__name__, VAR(name)); obj->attr().set(__package__, VAR(package)); // convert to fullname if(!package.empty()) name = package + "." + name; obj->attr().set(__path__, VAR(name)); // we do not allow override in order to avoid memory leak // it is because Module objects are not garbage collected if(_modules.contains(name)){ throw std::runtime_error(_S("module ", name.escape(), " already exists").str()); } // set it into _modules _modules.set(name, obj); return obj; } static std::string _opcode_argstr(VM* vm, Bytecode byte, const CodeObject* co){ std::string argStr = std::to_string(byte.arg); switch(byte.op){ case OP_LOAD_CONST: case OP_FORMAT_STRING: case OP_IMPORT_PATH: if(vm != nullptr){ argStr += _S(" (", vm->py_repr(co->consts[byte.arg]), ")").sv(); } break; case OP_LOAD_NAME: case OP_LOAD_GLOBAL: case OP_LOAD_NONLOCAL: case OP_STORE_GLOBAL: case OP_LOAD_ATTR: case OP_LOAD_METHOD: case OP_STORE_ATTR: case OP_DELETE_ATTR: case OP_BEGIN_CLASS: case OP_GOTO: case OP_DELETE_GLOBAL: case OP_INC_GLOBAL: case OP_DEC_GLOBAL: case OP_STORE_CLASS_ATTR: case OP_FOR_ITER_STORE_GLOBAL: argStr += _S(" (", StrName(byte.arg).sv(), ")").sv(); break; case OP_LOAD_FAST: case OP_STORE_FAST: case OP_DELETE_FAST: case OP_INC_FAST: case OP_DEC_FAST: case OP_FOR_ITER_STORE_FAST: case OP_LOAD_SUBSCR_FAST: case OP_STORE_SUBSCR_FAST: argStr += _S(" (", co->varnames[byte.arg].sv(), ")").sv(); break; case OP_LOAD_FUNCTION: argStr += _S(" (", co->func_decls[byte.arg]->code->name, ")").sv(); break; case OP_LOAD_SMALL_INT: case OP_LOAD_SUBSCR_SMALL_INT: argStr += _S(" (", (int)(byte.arg >> 2), ")").sv(); } return argStr; } Str VM::disassemble(CodeObject_ co){ auto pad = [](const Str& s, const int n){ if(s.length() >= n) return s.substr(0, n); return s + std::string(n - s.length(), ' '); }; std::vector jumpTargets; for(auto byte : co->codes){ if(byte.op == OP_JUMP_ABSOLUTE || byte.op == OP_POP_JUMP_IF_FALSE || byte.op == OP_SHORTCUT_IF_FALSE_OR_POP || byte.op == OP_LOOP_CONTINUE){ jumpTargets.push_back(byte.arg); } if(byte.op == OP_GOTO){ // TODO: pre-compute jump targets for OP_GOTO int* target = co->labels.try_get_2_likely_found(StrName(byte.arg)); if(target != nullptr) jumpTargets.push_back(*target); } } SStream ss; int prev_line = -1; for(int i=0; icodes.size(); i++){ const Bytecode& byte = co->codes[i]; Str line = std::to_string(co->lines[i].lineno); if(co->lines[i].lineno == prev_line) line = ""; else{ if(prev_line != -1) ss << "\n"; prev_line = co->lines[i].lineno; } std::string pointer; if(std::find(jumpTargets.begin(), jumpTargets.end(), i) != jumpTargets.end()){ pointer = "-> "; }else{ pointer = " "; } ss << pad(line, 8) << pointer << pad(std::to_string(i), 3); std::string bc_name(OP_NAMES[byte.op]); if(co->lines[i].is_virtual) bc_name += '*'; ss << " " << pad(bc_name, 25) << " "; // ss << pad(byte.arg == -1 ? "" : std::to_string(byte.arg), 5); std::string argStr = _opcode_argstr(this, byte, co.get()); ss << argStr; // ss << pad(argStr, 40); // may overflow // ss << co->blocks[byte.block].type; if(i != co->codes.size() - 1) ss << '\n'; } for(auto& decl: co->func_decls){ ss << "\n\n" << "Disassembly of " << decl->code->name << ":\n"; ss << disassemble(decl->code); } ss << "\n"; return Str(ss.str()); } #if PK_DEBUG_CEVAL_STEP void VM::__log_s_data(const char* title) { if(_main == nullptr) return; if(callstack.empty()) return; SStream ss; if(title) ss << title << " | "; std::map sp_bases; for(Frame& f: callstack.data()){ if(f._sp_base == nullptr) PK_FATAL_ERROR(); sp_bases[f._sp_base] += 1; } Frame* frame = &callstack.top(); int line = frame->co->lines[frame->_ip]; ss << frame->co->name << ":" << line << " ["; for(PyVar* p=s_data.begin(); p!=s_data.end(); p++){ ss << std::string(sp_bases[p], '|'); if(sp_bases[p] > 0) ss << " "; PyVar obj = *p; if(obj == nullptr) ss << "(nil)"; else if(obj == PY_NULL) ss << "NULL"; else if(is_int(obj)) ss << CAST(i64, obj); else if(is_float(obj)) ss << CAST(f64, obj); else if(is_type(obj, tp_str)) ss << CAST(Str, obj).escape(); else if(obj == None) ss << "None"; else if(obj == True) ss << "True"; else if(obj == False) ss << "False"; else if(is_type(obj, tp_function)){ auto& f = CAST(Function&, obj); ss << f.decl->code->name << "(...)"; } else if(is_type(obj, tp_type)){ Type t = PK_OBJ_GET(Type, obj); ss << ""; } else if(is_type(obj, tp_list)){ auto& t = CAST(List&, obj); ss << "list(size=" << t.size() << ")"; } else if(is_type(obj, tp_tuple)){ auto& t = CAST(Tuple&, obj); ss << "tuple(size=" << t.size() << ")"; } else ss << "(" << _type_name(this, obj->type) << ")"; ss << ", "; } std::string output = ss.str(); if(!s_data.empty()) { output.pop_back(); output.pop_back(); } output.push_back(']'); Bytecode byte = frame->co->codes[frame->_ip]; std::cout << output << " " << OP_NAMES[byte.op] << " " << _opcode_argstr(nullptr, byte, frame->co) << std::endl; } #endif void VM::__init_builtin_types(){ _all_types.push_back({heap._new(Type(1), Type(0)), Type(-1), nullptr, "object", true}); _all_types.push_back({heap._new(Type(1), Type(1)), Type(0), nullptr, "type", false}); auto _new_type = [this](const char* name, Type base=Type(0), bool subclass_enabled=false){ PyVar obj = new_type_object(nullptr, name, base, subclass_enabled); return PK_OBJ_GET(Type, obj); }; if(tp_int != _new_type("int")) exit(-3); if((tp_float != _new_type("float"))) exit(-3); if(tp_bool != _new_type("bool")) exit(-3); if(tp_str != _new_type("str")) exit(-3); if(tp_list != _new_type("list")) exit(-3); if(tp_tuple != _new_type("tuple")) exit(-3); if(tp_slice != _new_type("slice")) exit(-3); if(tp_range != _new_type("range")) exit(-3); if(tp_module != _new_type("module")) exit(-3); if(tp_function != _new_type("function")) exit(-3); if(tp_native_func != _new_type("native_func")) exit(-3); if(tp_bound_method != _new_type("bound_method")) exit(-3); if(tp_super != _new_type("super")) exit(-3); if(tp_exception != _new_type("Exception", Type(0), true)) exit(-3); if(tp_bytes != _new_type("bytes")) exit(-3); if(tp_mappingproxy != _new_type("mappingproxy")) exit(-3); if(tp_dict != _new_type("dict", Type(0), true)) exit(-3); // dict can be subclassed if(tp_property != _new_type("property")) exit(-3); if(tp_star_wrapper != _new_type("_star_wrapper")) exit(-3); if(tp_staticmethod != _new_type("staticmethod")) exit(-3); if(tp_classmethod != _new_type("classmethod")) exit(-3); // SyntaxError and IndentationError must be created here Type tp_syntax_error = _new_type("SyntaxError", tp_exception, true); Type tp_indentation_error = _new_type("IndentationError", tp_syntax_error, true); this->None = heap._new(_new_type("NoneType")); this->NotImplemented = heap._new(_new_type("NotImplementedType")); this->Ellipsis = heap._new(_new_type("ellipsis")); this->True = heap._new(tp_bool); this->False = heap._new(tp_bool); this->StopIteration = _all_types[_new_type("StopIteration", tp_exception)].obj; this->builtins = new_module("builtins"); // setup public types builtins->attr().set("type", _t(tp_type)); builtins->attr().set("object", _t(tp_object)); builtins->attr().set("bool", _t(tp_bool)); builtins->attr().set("int", _t(tp_int)); builtins->attr().set("float", _t(tp_float)); builtins->attr().set("str", _t(tp_str)); builtins->attr().set("list", _t(tp_list)); builtins->attr().set("tuple", _t(tp_tuple)); builtins->attr().set("range", _t(tp_range)); builtins->attr().set("bytes", _t(tp_bytes)); builtins->attr().set("dict", _t(tp_dict)); builtins->attr().set("property", _t(tp_property)); builtins->attr().set("StopIteration", StopIteration); builtins->attr().set("NotImplemented", NotImplemented); builtins->attr().set("slice", _t(tp_slice)); builtins->attr().set("Exception", _t(tp_exception)); builtins->attr().set("SyntaxError", _t(tp_syntax_error)); builtins->attr().set("IndentationError", _t(tp_indentation_error)); __post_init_builtin_types(); this->_main = new_module("__main__"); } // `heap.gc_scope_lock();` needed before calling this function void VM::__unpack_as_list(ArgsView args, List& list){ for(PyVar obj: args){ if(is_type(obj, tp_star_wrapper)){ const StarWrapper& w = _CAST(StarWrapper&, obj); // maybe this check should be done in the compile time if(w.level != 1) TypeError("expected level 1 star wrapper"); PyVar _0 = py_iter(w.obj); const PyTypeInfo* info = _tp_info(_0); PyVar _1 = _py_next(info, _0); while(_1 != StopIteration){ list.push_back(_1); _1 = _py_next(info, _0); } }else{ list.push_back(obj); } } } // `heap.gc_scope_lock();` needed before calling this function void VM::__unpack_as_dict(ArgsView args, Dict& dict){ for(PyVar obj: args){ if(is_type(obj, tp_star_wrapper)){ const StarWrapper& w = _CAST(StarWrapper&, obj); // maybe this check should be done in the compile time if(w.level != 2) TypeError("expected level 2 star wrapper"); const Dict& other = CAST(Dict&, w.obj); dict.update(other); }else{ const Tuple& t = CAST(Tuple&, obj); if(t.size() != 2) TypeError("expected tuple of length 2"); dict.set(t[0], t[1]); } } } void VM::__prepare_py_call(PyVar* buffer, ArgsView args, ArgsView kwargs, const FuncDecl_& decl){ const CodeObject* co = decl->code.get(); int co_nlocals = co->varnames.size(); int decl_argc = decl->args.size(); if(args.size() < decl_argc){ vm->TypeError(_S( co->name, "() takes ", decl_argc, " positional arguments but ", args.size(), " were given" )); } int i = 0; // prepare args for(int index: decl->args) buffer[index] = args[i++]; // set extra varnames to PY_NULL for(int j=i; jkwargs) buffer[kv.index] = kv.value; // handle *args if(decl->starred_arg != -1){ ArgsView vargs(args.begin() + i, args.end()); buffer[decl->starred_arg] = VAR(vargs.to_tuple()); i += vargs.size(); }else{ // kwdefaults override for(auto& kv: decl->kwargs){ if(i >= args.size()) break; buffer[kv.index] = args[i++]; } if(i < args.size()) TypeError(_S("too many arguments", " (", decl->code->name, ')')); } PyVar vkwargs; if(decl->starred_kwarg != -1){ vkwargs = VAR(Dict(this)); buffer[decl->starred_kwarg] = vkwargs; }else{ vkwargs = nullptr; } for(int j=0; jkw_to_index.try_get_likely_found(key); // if key is an explicit key, set as local variable if(index >= 0){ buffer[index] = kwargs[j+1]; }else{ // otherwise, set as **kwargs if possible if(vkwargs == nullptr){ TypeError(_S(key.escape(), " is an invalid keyword argument for ", co->name, "()")); }else{ Dict& dict = _CAST(Dict&, vkwargs); dict.set(VAR(key.sv()), kwargs[j+1]); } } } } PyVar VM::vectorcall(int ARGC, int KWARGC, bool op_call){ PyVar* p1 = s_data._sp - KWARGC*2; PyVar* p0 = p1 - ARGC - 2; // [callable, , args..., kwargs...] // ^p0 ^p1 ^_sp PyVar callable = p1[-(ARGC + 2)]; Type callable_t = _tp(callable); int method_call = p0[1] != PY_NULL; // handle boundmethod, do a patch if(callable_t == tp_bound_method){ if(method_call) PK_FATAL_ERROR(); BoundMethod& bm = PK_OBJ_GET(BoundMethod, callable); callable = bm.func; // get unbound method callable_t = _tp(callable); p1[-(ARGC + 2)] = bm.func; p1[-(ARGC + 1)] = bm.self; method_call = 1; // [unbound, self, args..., kwargs...] } ArgsView args(p1 - ARGC - method_call, p1); ArgsView kwargs(p1, s_data._sp); PyVar* _base = args.begin(); PyVar buffer[PK_MAX_CO_VARNAMES]; if(callable_t == tp_function){ /*****************_py_call*****************/ // check stack overflow if(s_data.is_overflow()) StackOverflowError(); const Function& fn = PK_OBJ_GET(Function, callable); const CodeObject* co = fn.decl->code.get(); int co_nlocals = co->varnames.size(); switch(fn.decl->type){ case FuncType::UNSET: PK_FATAL_ERROR(); break; case FuncType::NORMAL: __prepare_py_call(buffer, args, kwargs, fn.decl); // copy buffer back to stack s_data.reset(_base + co_nlocals); for(int j=0; jargs.size()) TypeError(_S(co->name, "() takes ", fn.decl->args.size(), " positional arguments but ", args.size(), " were given")); if(!kwargs.empty()) TypeError(_S(co->name, "() takes no keyword arguments")); // [callable, , args..., local_vars...] // ^p0 ^p1 ^_sp s_data.reset(_base + co_nlocals); // initialize local variables to PY_NULL for(PyVar* p=p1; p!=s_data._sp; p++) *p = PY_NULL; break; case FuncType::EMPTY: if(args.size() != fn.decl->args.size()) TypeError(_S(co->name, "() takes ", fn.decl->args.size(), " positional arguments but ", args.size(), " were given")); if(!kwargs.empty()) TypeError(_S(co->name, "() takes no keyword arguments")); s_data.reset(p0); return None; case FuncType::GENERATOR: __prepare_py_call(buffer, args, kwargs, fn.decl); s_data.reset(p0); return __py_generator( Frame(nullptr, co, fn._module, callable, nullptr), ArgsView(buffer, buffer + co_nlocals) ); }; // simple or normal callstack.emplace(p0, co, fn._module, callable, args.begin()); if(op_call) return PY_OP_CALL; return __run_top_frame(); /*****************_py_call*****************/ } if(callable_t == tp_native_func){ const auto& f = PK_OBJ_GET(NativeFunc, callable); PyVar ret; if(f.decl != nullptr){ int co_nlocals = f.decl->code->varnames.size(); __prepare_py_call(buffer, args, kwargs, f.decl); // copy buffer back to stack s_data.reset(_base + co_nlocals); for(int j=0; jheap.gcnew(PK_OBJ_GET(Type, callable)); }else{ PUSH(new_f); PUSH(PY_NULL); PUSH(callable); // cls for(PyVar o: args) PUSH(o); for(PyVar o: kwargs) PUSH(o); // if obj is not an instance of `cls`, the behavior is undefined obj = vectorcall(ARGC+1, KWARGC); } // __init__ PyVar self; callable = get_unbound_method(obj, __init__, &self, false); if (callable != nullptr) { callable_t = _tp(callable); // replace `NULL` with `self` p1[-(ARGC + 2)] = callable; p1[-(ARGC + 1)] = self; // [init_f, self, args..., kwargs...] vectorcall(ARGC, KWARGC); // We just discard the return value of `__init__` // in cpython it raises a TypeError if the return value is not None }else{ // manually reset the stack s_data.reset(p0); } return obj; } // handle `__call__` overload PyVar self; PyVar call_f = get_unbound_method(callable, __call__, &self, false); if(self != PY_NULL){ p1[-(ARGC + 2)] = call_f; p1[-(ARGC + 1)] = self; // [call_f, self, args..., kwargs...] return vectorcall(ARGC, KWARGC, op_call); } TypeError(_type_name(vm, callable_t).escape() + " object is not callable"); PK_UNREACHABLE() } void VM::delattr(PyVar _0, StrName _name){ const PyTypeInfo* ti = _tp_info(_0); if(ti->m__delattr__ && ti->m__delattr__(this, _0, _name)) return; if(is_tagged(_0) || !_0->is_attr_valid()) TypeError("cannot delete attribute"); if(!_0->attr().del(_name)) AttributeError(_0, _name); } // https://docs.python.org/3/howto/descriptor.html#invocation-from-an-instance PyVar VM::getattr(PyVar obj, StrName name, bool throw_err){ Type objtype(0); // handle super() proxy if(is_type(obj, tp_super)){ const Super& super = PK_OBJ_GET(Super, obj); obj = super.first; objtype = super.second; }else{ objtype = _tp(obj); } PyVar cls_var = find_name_in_mro(objtype, name); if(cls_var != nullptr){ // handle descriptor if(is_type(cls_var, tp_property)){ const Property& prop = PK_OBJ_GET(Property, cls_var); return call(prop.getter, obj); } } // handle instance __dict__ if(!is_tagged(obj) && obj->is_attr_valid()){ PyVar val; if(obj->type == tp_type){ val = find_name_in_mro(PK_OBJ_GET(Type, obj), name); if(val != nullptr){ if(is_tagged(val)) return val; if(val->type == tp_staticmethod) return PK_OBJ_GET(StaticMethod, val).func; if(val->type == tp_classmethod) return VAR(BoundMethod(obj, PK_OBJ_GET(ClassMethod, val).func)); return val; } }else{ val = obj->attr().try_get_likely_found(name); if(val != nullptr) return val; } } if(cls_var != nullptr){ // bound method is non-data descriptor if(!is_tagged(cls_var)){ switch(cls_var->type){ case tp_function.index: return VAR(BoundMethod(obj, cls_var)); case tp_native_func.index: return VAR(BoundMethod(obj, cls_var)); case tp_staticmethod.index: return PK_OBJ_GET(StaticMethod, cls_var).func; case tp_classmethod.index: return VAR(BoundMethod(_t(objtype), PK_OBJ_GET(ClassMethod, cls_var).func)); } } return cls_var; } const PyTypeInfo* ti = &_all_types[objtype]; if(ti->m__getattr__){ PyVar ret = ti->m__getattr__(this, obj, name); if(ret) return ret; } if(throw_err) AttributeError(obj, name); return nullptr; } // used by OP_LOAD_METHOD // try to load a unbound method (fallback to `getattr` if not found) PyVar VM::get_unbound_method(PyVar obj, StrName name, PyVar* self, bool throw_err, bool fallback){ *self = PY_NULL; Type objtype(0); // handle super() proxy if(is_type(obj, tp_super)){ const Super& super = PK_OBJ_GET(Super, obj); obj = super.first; objtype = super.second; }else{ objtype = _tp(obj); } PyVar cls_var = find_name_in_mro(objtype, name); if(fallback){ if(cls_var != nullptr){ // handle descriptor if(is_type(cls_var, tp_property)){ const Property& prop = PK_OBJ_GET(Property, cls_var); return call(prop.getter, obj); } } // handle instance __dict__ if(!is_tagged(obj) && obj->is_attr_valid()){ PyVar val; if(obj->type == tp_type){ val = find_name_in_mro(PK_OBJ_GET(Type, obj), name); if(val != nullptr){ if(is_tagged(val)) return val; if(val->type == tp_staticmethod) return PK_OBJ_GET(StaticMethod, val).func; if(val->type == tp_classmethod) return VAR(BoundMethod(obj, PK_OBJ_GET(ClassMethod, val).func)); return val; } }else{ val = obj->attr().try_get_likely_found(name); if(val != nullptr) return val; } } } if(cls_var != nullptr){ if(!is_tagged(cls_var)){ switch(cls_var->type){ case tp_function.index: *self = obj; break; case tp_native_func.index: *self = obj; break; case tp_staticmethod.index: *self = PY_NULL; return PK_OBJ_GET(StaticMethod, cls_var).func; case tp_classmethod.index: *self = _t(objtype); return PK_OBJ_GET(ClassMethod, cls_var).func; } } return cls_var; } const PyTypeInfo* ti = &_all_types[objtype]; if(fallback && ti->m__getattr__){ PyVar ret = ti->m__getattr__(this, obj, name); if(ret) return ret; } if(throw_err) AttributeError(obj, name); return nullptr; } void VM::setattr(PyVar obj, StrName name, PyVar value){ Type objtype(0); // handle super() proxy if(is_type(obj, tp_super)){ Super& super = PK_OBJ_GET(Super, obj); obj = super.first; objtype = super.second; }else{ objtype = _tp(obj); } PyVar cls_var = find_name_in_mro(objtype, name); if(cls_var != nullptr){ // handle descriptor if(is_type(cls_var, tp_property)){ const Property& prop = _CAST(Property&, cls_var); if(prop.setter != vm->None){ call(prop.setter, obj, value); }else{ TypeError(_S("readonly attribute: ", name.escape())); } return; } } const PyTypeInfo* ti = &_all_types[objtype]; if(ti->m__setattr__){ ti->m__setattr__(this, obj, name, value); return; } // handle instance __dict__ if(is_tagged(obj) || !obj->is_attr_valid()) TypeError("cannot set attribute"); obj->attr().set(name, value); } PyVar VM::bind_func(PyVar obj, StrName name, int argc, NativeFuncC fn, any userdata, BindType bt) { PyVar nf = VAR(NativeFunc(fn, argc, std::move(userdata))); switch(bt){ case BindType::DEFAULT: break; case BindType::STATICMETHOD: nf = VAR(StaticMethod(nf)); break; case BindType::CLASSMETHOD: nf = VAR(ClassMethod(nf)); break; } if(obj != nullptr) obj->attr().set(name, nf); return nf; } PyVar VM::bind(PyVar obj, const char* sig, NativeFuncC fn, any userdata, BindType bt){ return bind(obj, sig, nullptr, fn, std::move(userdata), bt); } PyVar VM::bind(PyVar obj, const char* sig, const char* docstring, NativeFuncC fn, any userdata, BindType bt){ CodeObject_ co; try{ // fn(a, b, *c, d=1) -> None co = compile(_S("def ", sig, " : pass"), "", EXEC_MODE); }catch(const Exception&){ throw std::runtime_error("invalid signature: " + std::string(sig)); } if(co->func_decls.size() != 1){ throw std::runtime_error("expected 1 function declaration"); } FuncDecl_ decl = co->func_decls[0]; decl->docstring = docstring; PyVar f_obj = VAR(NativeFunc(fn, decl, std::move(userdata))); switch(bt){ case BindType::STATICMETHOD: f_obj = VAR(StaticMethod(f_obj)); break; case BindType::CLASSMETHOD: f_obj = VAR(ClassMethod(f_obj)); break; case BindType::DEFAULT: break; } if(obj != nullptr) obj->attr().set(decl->code->name, f_obj); return f_obj; } PyVar VM::bind_property(PyVar obj, const char* name, NativeFuncC fget, NativeFuncC fset){ PK_ASSERT(is_type(obj, tp_type)); std::string_view name_sv(name); int pos = name_sv.find(':'); if(pos > 0) name_sv = name_sv.substr(0, pos); PyVar _0 = heap.gcnew(tp_native_func, fget, 1); PyVar _1 = vm->None; if(fset != nullptr) _1 = heap.gcnew(tp_native_func, fset, 2); PyVar prop = VAR(Property(_0, _1)); obj->attr().set(StrName(name_sv), prop); return prop; } void VM::__builtin_error(StrName type){ _error(call(builtins->attr(type))); } void VM::__builtin_error(StrName type, PyVar arg){ _error(call(builtins->attr(type), arg)); } void VM::__builtin_error(StrName type, const Str& msg){ __builtin_error(type, VAR(msg)); } void VM::BinaryOptError(const char* op, PyVar _0, PyVar _1) { StrName name_0 = _type_name(vm, _tp(_0)); StrName name_1 = _type_name(vm, _tp(_1)); TypeError(_S("unsupported operand type(s) for ", op, ": ", name_0.escape(), " and ", name_1.escape())); } void VM::AttributeError(PyVar obj, StrName name){ if(isinstance(obj, vm->tp_type)){ __builtin_error("AttributeError", _S("type object ", _type_name(vm, PK_OBJ_GET(Type, obj)).escape(), " has no attribute ", name.escape())); }else{ __builtin_error("AttributeError", _S(_type_name(vm, _tp(obj)).escape(), " object has no attribute ", name.escape())); } } void VM::_error(PyVar e_obj){ PK_ASSERT(isinstance(e_obj, tp_exception)) Exception& e = PK_OBJ_GET(Exception, e_obj); if(callstack.empty()){ e.is_re = false; throw e; } PUSH(e_obj); __raise_exc(); } void VM::__raise_exc(bool re_raise){ Frame* frame = &callstack.top(); Exception& e = PK_OBJ_GET(Exception, s_data.top()); if(!re_raise){ e._ip_on_error = frame->_ip; e._code_on_error = (void*)frame->co; } bool ok = frame->jump_to_exception_handler(&s_data); int actual_ip = frame->_ip; if(e._ip_on_error >= 0 && e._code_on_error == (void*)frame->co) actual_ip = e._ip_on_error; int current_line = frame->co->lines[actual_ip].lineno; // current line auto current_f_name = frame->co->name.sv(); // current function name if(frame->_callable == nullptr) current_f_name = ""; // not in a function e.st_push(frame->co->src, current_line, nullptr, current_f_name); if(ok) throw HandledException(); else throw UnhandledException(); } void ManagedHeap::mark() { for(PyVar obj: _no_gc) PK_OBJ_MARK(obj); vm->callstack.apply([](Frame& frame){ frame._gc_mark(); }); for(PyVar obj: vm->s_data) PK_OBJ_MARK(obj); for(auto [_, co]: vm->__cached_codes) co->_gc_mark(); if(vm->__last_exception) PK_OBJ_MARK(vm->__last_exception); if(vm->__curr_class) PK_OBJ_MARK(vm->__curr_class); if(vm->__c.error != nullptr) PK_OBJ_MARK(vm->__c.error); if(_gc_marker_ex) _gc_marker_ex(vm); } StrName _type_name(VM *vm, Type type){ return vm->_all_types[type].name; } void _gc_mark_namedict(NameDict* t){ t->apply([](StrName name, PyVar obj){ PK_OBJ_MARK(obj); }); } void VM::bind__getitem__(Type type, PyVar (*f)(VM*, PyVar, PyVar)){ _all_types[type].m__getitem__ = f; bind_func(type, __getitem__, 2, [](VM* vm, ArgsView args){ return lambda_get_userdata(args.begin())(vm, args[0], args[1]); }, f); } void VM::bind__setitem__(Type type, void (*f)(VM*, PyVar, PyVar, PyVar)){ _all_types[type].m__setitem__ = f; bind_func(type, __setitem__, 3, [](VM* vm, ArgsView args){ lambda_get_userdata(args.begin())(vm, args[0], args[1], args[2]); return vm->None; }, f); } void VM::bind__delitem__(Type type, void (*f)(VM*, PyVar, PyVar)){ _all_types[type].m__delitem__ = f; bind_func(type, __delitem__, 2, [](VM* vm, ArgsView args){ lambda_get_userdata(args.begin())(vm, args[0], args[1]); return vm->None; }, f); } PyVar VM::__pack_next_retval(unsigned n){ if(n == 0) return StopIteration; if(n == 1) return s_data.popx(); PyVar retval = VAR(s_data.view(n).to_tuple()); s_data._sp -= n; return retval; } void VM::bind__next__(Type type, unsigned (*f)(VM*, PyVar)){ _all_types[type].m__next__ = f; bind_func(type, __next__, 1, [](VM* vm, ArgsView args){ int n = lambda_get_userdata(args.begin())(vm, args[0]); return vm->__pack_next_retval(n); }, f); } void VM::bind__next__(Type type, PyVar (*f)(VM*, PyVar)){ bind_func(type, __next__, 1, [](VM* vm, ArgsView args){ auto f = lambda_get_userdata(args.begin()); return f(vm, args[0]); }, f); } #define BIND_UNARY_SPECIAL(name) \ void VM::bind##name(Type type, PyVar (*f)(VM*, PyVar)){ \ _all_types[type].m##name = f; \ bind_func(type, name, 1, [](VM* vm, ArgsView args){ \ return lambda_get_userdata(args.begin())(vm, args[0]); \ }, f); \ } BIND_UNARY_SPECIAL(__iter__) BIND_UNARY_SPECIAL(__neg__) BIND_UNARY_SPECIAL(__invert__) #undef BIND_UNARY_SPECIAL void VM::bind__str__(Type type, Str (*f)(VM*, PyVar)){ _all_types[type].m__str__ = f; bind_func(type, __str__, 1, [](VM* vm, ArgsView args){ Str s = lambda_get_userdata(args.begin())(vm, args[0]); return VAR(s); }, f); } void VM::bind__repr__(Type type, Str (*f)(VM*, PyVar)){ _all_types[type].m__repr__ = f; bind_func(type, __repr__, 1, [](VM* vm, ArgsView args){ Str s = lambda_get_userdata(args.begin())(vm, args[0]); return VAR(s); }, f); } void VM::bind__hash__(Type type, i64 (*f)(VM*, PyVar)){ _all_types[type].m__hash__ = f; bind_func(type, __hash__, 1, [](VM* vm, ArgsView args){ i64 ret = lambda_get_userdata(args.begin())(vm, args[0]); return VAR(ret); }, f); } void VM::bind__len__(Type type, i64 (*f)(VM*, PyVar)){ _all_types[type].m__len__ = f; bind_func(type, __len__, 1, [](VM* vm, ArgsView args){ i64 ret = lambda_get_userdata(args.begin())(vm, args[0]); return VAR(ret); }, f); } #define BIND_BINARY_SPECIAL(name) \ void VM::bind##name(Type type, BinaryFuncC f){ \ _all_types[type].m##name = f; \ bind_func(type, name, 2, [](VM* vm, ArgsView args){ \ return lambda_get_userdata(args.begin())(vm, args[0], args[1]);\ }, f); \ } BIND_BINARY_SPECIAL(__eq__) BIND_BINARY_SPECIAL(__lt__) BIND_BINARY_SPECIAL(__le__) BIND_BINARY_SPECIAL(__gt__) BIND_BINARY_SPECIAL(__ge__) BIND_BINARY_SPECIAL(__contains__) BIND_BINARY_SPECIAL(__add__) BIND_BINARY_SPECIAL(__sub__) BIND_BINARY_SPECIAL(__mul__) BIND_BINARY_SPECIAL(__truediv__) BIND_BINARY_SPECIAL(__floordiv__) BIND_BINARY_SPECIAL(__mod__) BIND_BINARY_SPECIAL(__pow__) BIND_BINARY_SPECIAL(__matmul__) BIND_BINARY_SPECIAL(__lshift__) BIND_BINARY_SPECIAL(__rshift__) BIND_BINARY_SPECIAL(__and__) BIND_BINARY_SPECIAL(__or__) BIND_BINARY_SPECIAL(__xor__) #undef BIND_BINARY_SPECIAL void Dict::_probe_0(PyVar key, bool &ok, int &i) const{ ok = false; i64 hash = vm->py_hash(key); i = hash & _mask; for(int j=0; j<_capacity; j++) { if(_items[i].first != nullptr){ if(vm->py_eq(_items[i].first, key)) { ok = true; break; } }else{ if(_items[i].second == nullptr) break; } // https://github.com/python/cpython/blob/3.8/Objects/dictobject.c#L166 i = ((5*i) + 1) & _mask; } } void Dict::_probe_1(PyVar key, bool &ok, int &i) const{ ok = false; i = vm->py_hash(key) & _mask; while(_items[i].first != nullptr) { if(vm->py_eq(_items[i].first, key)) { ok = true; break; } // https://github.com/python/cpython/blob/3.8/Objects/dictobject.c#L166 i = ((5*i) + 1) & _mask; } } void NativeFunc::check_size(VM* vm, ArgsView args) const{ if(args.size() != argc && argc != -1) { vm->TypeError(_S("expected ", argc, " arguments, got ", args.size())); } } #if PK_ENABLE_PROFILER void NextBreakpoint::_step(VM* vm){ int curr_callstack_size = vm->callstack.size(); int curr_lineno = vm->callstack.top().curr_lineno(); if(should_step_into){ if(curr_callstack_size != callstack_size || curr_lineno != lineno){ vm->__breakpoint(); } }else{ if(curr_callstack_size == callstack_size) { if(curr_lineno != lineno) vm->__breakpoint(); }else if(curr_callstack_size < callstack_size){ // returning vm->__breakpoint(); } } } #endif void VM::__pop_frame(){ s_data.reset(callstack.top()._sp_base); callstack.pop(); #if PK_ENABLE_PROFILER if(!_next_breakpoint.empty() && callstack.size()<_next_breakpoint.callstack_size){ _next_breakpoint = NextBreakpoint(); } #endif } void VM::__breakpoint(){ #if PK_ENABLE_PROFILER _next_breakpoint = NextBreakpoint(); bool show_where = false; bool show_headers = true; while(true){ std::vector frames; LinkedFrame* lf = callstack._tail; while(lf != nullptr){ frames.push_back(lf); lf = lf->f_back; if(frames.size() >= 4) break; } if(show_headers){ for(int i=frames.size()-1; i>=0; i--){ if(!show_where && i!=0) continue; SStream ss; Frame* frame = &frames[i]->frame; int lineno = frame->curr_lineno(); ss << "File \"" << frame->co->src->filename << "\", line " << lineno; if(frame->_callable){ ss << ", in "; ss << PK_OBJ_GET(Function, frame->_callable).decl->code->name; } ss << '\n'; ss << "-> " << frame->co->src->get_line(lineno) << '\n'; stdout_write(ss.str()); } show_headers = false; } vm->stdout_write("(Pdb) "); Frame* frame_0 = &frames[0]->frame; std::string line; if(!std::getline(std::cin, line)){ stdout_write("--KeyboardInterrupt--\n"); continue; } if(line == "h" || line == "help"){ stdout_write("h, help: show this help message\n"); stdout_write("q, quit: exit the debugger\n"); stdout_write("n, next: execute next line\n"); stdout_write("s, step: step into\n"); stdout_write("w, where: show current stack frame\n"); stdout_write("c, continue: continue execution\n"); stdout_write("a, args: show local variables\n"); stdout_write("p, print : evaluate expression\n"); stdout_write("l, list: show lines around current line\n"); stderr_write("ll, longlist: show all lines\n"); stdout_write("!: execute statement\n"); continue; } if(line == "q" || line == "quit") { vm->RuntimeError("pdb quit"); PK_UNREACHABLE() } if(line == "n" || line == "next"){ vm->_next_breakpoint = NextBreakpoint(vm->callstack.size(), frame_0->curr_lineno(), false); break; } if(line == "s" || line == "step"){ vm->_next_breakpoint = NextBreakpoint(vm->callstack.size(), frame_0->curr_lineno(), true); break; } if(line == "w" || line == "where"){ show_where = !show_where; show_headers = true; continue; } if(line == "c" || line == "continue") break; if(line == "a" || line == "args"){ int i = 0; for(PyVar obj: frame_0->_locals){ if(obj == PY_NULL) continue; StrName name = frame_0->co->varnames[i++]; stdout_write(_S(name.sv(), " = ", vm->py_repr(obj), '\n')); } continue; } bool is_list = line == "l" || line == "list"; bool is_longlist = line == "ll" || line == "longlist"; if(is_list || is_longlist){ if(frame_0->co->src->is_precompiled) continue; int lineno = frame_0->curr_lineno(); int start, end; if(is_list){ int max_line = frame_0->co->src->line_starts.size() + 1; start = std::max(1, lineno-5); end = std::min(max_line, lineno+5); }else{ start = frame_0->co->start_line; end = frame_0->co->end_line; if(start == -1 || end == -1) continue; } SStream ss; int max_width = std::to_string(end).size(); for(int i=start; i<=end; i++){ int spaces = max_width - std::to_string(i).size(); ss << std::string(spaces, ' ') << std::to_string(i); if(i == lineno) ss << " -> "; else ss << " "; ss << frame_0->co->src->get_line(i) << '\n'; } stdout_write(ss.str()); continue; } int space = line.find_first_of(' '); if(space != -1){ std::string cmd = line.substr(0, space); std::string arg = line.substr(space+1); if(arg.empty()) continue; // ignore empty command if(cmd == "p" || cmd == "print"){ CodeObject_ code = compile(arg, "", EVAL_MODE, true); PyVar retval = vm->_exec(code.get(), frame_0->_module, frame_0->_callable, frame_0->_locals); stdout_write(vm->py_repr(retval)); stdout_write("\n"); }else if(cmd == "!"){ CodeObject_ code = compile(arg, "", EXEC_MODE, true); vm->_exec(code.get(), frame_0->_module, frame_0->_callable, frame_0->_locals); } continue; } } #endif } } // namespace pkpy