2024-06-02 16:53:51 +08:00

139 lines
5.7 KiB
C++

#pragma once
#include "pocketpy/common/types.hpp"
#include "pocketpy/common/traits.hpp"
#include <cmath>
namespace pkpy{
inline bool isclose(float a, float b){ return std::fabs(a - b) < 1e-4; }
struct Vec2{
static void _register(VM* vm, PyObject* mod, PyObject* type);
float x, y;
Vec2() : x(0.0f), y(0.0f) {}
Vec2(float x, float y) : x(x), y(y) {}
Vec2 operator+(const Vec2& v) const { return Vec2(x + v.x, y + v.y); }
Vec2 operator-(const Vec2& v) const { return Vec2(x - v.x, y - v.y); }
Vec2 operator*(float s) const { return Vec2(x * s, y * s); }
Vec2 operator*(const Vec2& v) const { return Vec2(x * v.x, y * v.y); }
Vec2 operator/(float s) const { return Vec2(x / s, y / s); }
Vec2 operator-() const { return Vec2(-x, -y); }
bool operator==(const Vec2& v) const { return isclose(x, v.x) && isclose(y, v.y); }
bool operator!=(const Vec2& v) const { return !isclose(x, v.x) || !isclose(y, v.y); }
float operator[](int i) const { return (&x)[i]; }
float dot(const Vec2& v) const { return x * v.x + y * v.y; }
float cross(const Vec2& v) const { return x * v.y - y * v.x; }
float length() const { return sqrtf(x * x + y * y); }
float length_squared() const { return x * x + y * y; }
Vec2 normalize() const { float l = length(); return Vec2(x / l, y / l); }
Vec2 rotate(float radian) const { float cr = cosf(radian), sr = sinf(radian); return Vec2(x * cr - y * sr, x * sr + y * cr); }
};
struct Vec3{
static void _register(VM* vm, PyObject* mod, PyObject* type);
float x, y, z;
Vec3() : x(0.0f), y(0.0f), z(0.0f) {}
Vec3(float x, float y, float z) : x(x), y(y), z(z) {}
Vec3 operator+(const Vec3& v) const { return Vec3(x + v.x, y + v.y, z + v.z); }
Vec3 operator-(const Vec3& v) const { return Vec3(x - v.x, y - v.y, z - v.z); }
Vec3 operator*(float s) const { return Vec3(x * s, y * s, z * s); }
Vec3 operator*(const Vec3& v) const { return Vec3(x * v.x, y * v.y, z * v.z); }
Vec3 operator/(float s) const { return Vec3(x / s, y / s, z / s); }
Vec3 operator-() const { return Vec3(-x, -y, -z); }
bool operator==(const Vec3& v) const { return isclose(x, v.x) && isclose(y, v.y) && isclose(z, v.z); }
bool operator!=(const Vec3& v) const { return !isclose(x, v.x) || !isclose(y, v.y) || !isclose(z, v.z); }
float operator[](int i) const { return (&x)[i]; }
float dot(const Vec3& v) const { return x * v.x + y * v.y + z * v.z; }
Vec3 cross(const Vec3& v) const { return Vec3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x); }
float length() const { return sqrtf(x * x + y * y + z * z); }
float length_squared() const { return x * x + y * y + z * z; }
Vec3 normalize() const { float l = length(); return Vec3(x / l, y / l, z / l); }
};
struct Vec4{
static void _register(VM* vm, PyObject* mod, PyObject* type);
float x, y, z, w;
Vec4() : x(0.0f), y(0.0f), z(0.0f), w(0.0f) {}
Vec4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}
Vec4 operator+(const Vec4& v) const { return Vec4(x + v.x, y + v.y, z + v.z, w + v.w); }
Vec4 operator-(const Vec4& v) const { return Vec4(x - v.x, y - v.y, z - v.z, w - v.w); }
Vec4 operator*(float s) const { return Vec4(x * s, y * s, z * s, w * s); }
Vec4 operator*(const Vec4& v) const { return Vec4(x * v.x, y * v.y, z * v.z, w * v.w); }
Vec4 operator/(float s) const { return Vec4(x / s, y / s, z / s, w / s); }
Vec4 operator-() const { return Vec4(-x, -y, -z, -w); }
bool operator==(const Vec4& v) const { return isclose(x, v.x) && isclose(y, v.y) && isclose(z, v.z) && isclose(w, v.w); }
bool operator!=(const Vec4& v) const { return !isclose(x, v.x) || !isclose(y, v.y) || !isclose(z, v.z) || !isclose(w, v.w); }
float operator[](int i) const { return (&x)[i]; }
float dot(const Vec4& v) const { return x * v.x + y * v.y + z * v.z + w * v.w; }
float length() const { return sqrtf(x * x + y * y + z * z + w * w); }
float length_squared() const { return x * x + y * y + z * z + w * w; }
Vec4 normalize() const { float l = length(); return Vec4(x / l, y / l, z / l, w / l); }
NoReturn normalize_() { float l = length(); x /= l; y /= l; z /= l; w /= l; return {}; }
NoReturn copy_(const Vec4& v) { x = v.x; y = v.y; z = v.z; w = v.w; return {}; }
};
struct Mat3x3{
static void _register(VM* vm, PyObject* mod, PyObject* type);
union {
struct {
float _11, _12, _13;
float _21, _22, _23;
float _31, _32, _33;
};
float m[3][3];
float v[9];
};
Mat3x3();
Mat3x3(float, float, float, float, float, float, float, float, float);
static Mat3x3 zeros();
static Mat3x3 ones();
static Mat3x3 identity();
Mat3x3 operator+(const Mat3x3& other) const;
Mat3x3 operator-(const Mat3x3& other) const;
Mat3x3 operator*(float scalar) const;
Mat3x3 operator/(float scalar) const;
bool operator==(const Mat3x3& other) const;
bool operator!=(const Mat3x3& other) const;
Mat3x3 matmul(const Mat3x3& other) const;
Vec3 matmul(const Vec3& other) const;
float determinant() const;
Mat3x3 transpose() const;
bool inverse(Mat3x3& out) const;
/*************** affine transformations ***************/
static Mat3x3 trs(Vec2 t, float radian, Vec2 s);
bool is_affine() const;
Vec2 _t() const;
float _r() const;
Vec2 _s() const;
};
void add_module_linalg(VM* vm);
static_assert(py_sizeof<Mat3x3> <= 64);
static_assert(is_pod_v<Vec2>);
static_assert(is_pod_v<Vec3>);
static_assert(is_pod_v<Vec4>);
static_assert(is_pod_v<Mat3x3>);
template<>
inline constexpr bool is_sso_v<Vec2> = true;
template<>
inline constexpr bool is_sso_v<Vec3> = true;
} // namespace pkpy