pocketpy/src/compiler.h
2022-12-01 13:07:55 +08:00

1025 lines
37 KiB
C++

#pragma once
#include "parser.h"
#include "error.h"
#include "vm.h"
class Compiler;
typedef void (Compiler::*GrammarFn)();
typedef void (Compiler::*CompilerAction)();
struct GrammarRule{
GrammarFn prefix;
GrammarFn infix;
Precedence precedence;
};
struct Loop {
int start;
std::vector<int> breaks;
Loop(int start) : start(start) {}
};
class Compiler {
public:
std::unique_ptr<Parser> parser;
std::stack<_Code> codes;
std::stack<Loop> loops;
bool isCompilingClass = false;
VM* vm;
std::unordered_map<_TokenType, GrammarRule> rules;
_Code getCode() {
return codes.top();
}
CompileMode mode() {
return parser->src->mode;
}
Loop& getLoop() {
return loops.top();
}
Compiler(VM* vm, const char* source, _Str filename, CompileMode mode){
this->vm = vm;
this->parser = std::make_unique<Parser>(
std::make_shared<SourceMetadata>(source, filename, mode)
);
// http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/
#define METHOD(name) &Compiler::name
#define NO_INFIX nullptr, PREC_NONE
for(_TokenType i=0; i<__TOKENS_LEN; i++) rules[i] = { nullptr, NO_INFIX };
rules[TK(".")] = { nullptr, METHOD(exprAttrib), PREC_ATTRIB };
rules[TK("->")] = { nullptr, METHOD(exprAttribPtr), PREC_ATTRIB };
rules[TK("(")] = { METHOD(exprGrouping), METHOD(exprCall), PREC_CALL };
rules[TK("[")] = { METHOD(exprList), METHOD(exprSubscript), PREC_SUBSCRIPT };
rules[TK("{")] = { METHOD(exprMap), NO_INFIX };
rules[TK("%")] = { nullptr, METHOD(exprBinaryOp), PREC_FACTOR };
rules[TK("+")] = { nullptr, METHOD(exprBinaryOp), PREC_TERM };
rules[TK("-")] = { METHOD(exprUnaryOp), METHOD(exprBinaryOp), PREC_TERM };
rules[TK("*")] = { METHOD(exprUnaryOp), METHOD(exprBinaryOp), PREC_FACTOR };
rules[TK("/")] = { nullptr, METHOD(exprBinaryOp), PREC_FACTOR };
rules[TK("//")] = { nullptr, METHOD(exprBinaryOp), PREC_FACTOR };
rules[TK("**")] = { nullptr, METHOD(exprBinaryOp), PREC_EXPONENT };
rules[TK(">")] = { nullptr, METHOD(exprBinaryOp), PREC_COMPARISION };
rules[TK("<")] = { nullptr, METHOD(exprBinaryOp), PREC_COMPARISION };
rules[TK("==")] = { nullptr, METHOD(exprBinaryOp), PREC_EQUALITY };
rules[TK("!=")] = { nullptr, METHOD(exprBinaryOp), PREC_EQUALITY };
rules[TK(">=")] = { nullptr, METHOD(exprBinaryOp), PREC_COMPARISION };
rules[TK("<=")] = { nullptr, METHOD(exprBinaryOp), PREC_COMPARISION };
rules[TK("in")] = { nullptr, METHOD(exprBinaryOp), PREC_TEST };
rules[TK("is")] = { nullptr, METHOD(exprBinaryOp), PREC_TEST };
rules[TK("not in")] = { nullptr, METHOD(exprBinaryOp), PREC_TEST };
rules[TK("is not")] = { nullptr, METHOD(exprBinaryOp), PREC_TEST };
rules[TK("and") ] = { nullptr, METHOD(exprAnd), PREC_LOGICAL_AND };
rules[TK("or")] = { nullptr, METHOD(exprOr), PREC_LOGICAL_OR };
rules[TK("not")] = { METHOD(exprUnaryOp), nullptr, PREC_UNARY };
rules[TK("True")] = { METHOD(exprValue), NO_INFIX };
rules[TK("False")] = { METHOD(exprValue), NO_INFIX };
rules[TK("lambda")] = { METHOD(exprLambda), NO_INFIX };
rules[TK("None")] = { METHOD(exprValue), NO_INFIX };
rules[TK("...")] = { METHOD(exprValue), NO_INFIX };
rules[TK("@id")] = { METHOD(exprName), NO_INFIX };
rules[TK("@num")] = { METHOD(exprLiteral), NO_INFIX };
rules[TK("@str")] = { METHOD(exprLiteral), NO_INFIX };
rules[TK("@fstr")] = { METHOD(exprFString), NO_INFIX };
rules[TK("?")] = { nullptr, METHOD(exprTernary), PREC_TERNARY };
rules[TK("=")] = { nullptr, METHOD(exprAssign), PREC_ASSIGNMENT };
rules[TK("+=")] = { nullptr, METHOD(exprAssign), PREC_ASSIGNMENT };
rules[TK("-=")] = { nullptr, METHOD(exprAssign), PREC_ASSIGNMENT };
rules[TK("*=")] = { nullptr, METHOD(exprAssign), PREC_ASSIGNMENT };
rules[TK("/=")] = { nullptr, METHOD(exprAssign), PREC_ASSIGNMENT };
rules[TK("//=")] = { nullptr, METHOD(exprAssign), PREC_ASSIGNMENT };
rules[TK(",")] = { nullptr, METHOD(exprComma), PREC_COMMA };
rules[TK("<<")] = { nullptr, METHOD(exprBinaryOp), PREC_BITWISE_SHIFT };
rules[TK(">>")] = { nullptr, METHOD(exprBinaryOp), PREC_BITWISE_SHIFT };
rules[TK("&")] = { METHOD(exprUnaryOp), METHOD(exprBinaryOp), PREC_BITWISE_AND };
rules[TK("|")] = { nullptr, METHOD(exprBinaryOp), PREC_BITWISE_OR };
rules[TK("^")] = { nullptr, METHOD(exprBinaryOp), PREC_BITWISE_XOR };
#undef METHOD
#undef NO_INFIX
#define EXPR() parsePrecedence(PREC_TERNARY) // no '=' and ',' just a simple expression
#define EXPR_TUPLE() parsePrecedence(PREC_COMMA) // no '=', but ',' is allowed
#define EXPR_ANY() parsePrecedence(PREC_ASSIGNMENT)
}
_Str eatStringUntil(char quote) {
std::vector<char> buff;
while (true) {
char c = parser->eatCharIncludeNewLine();
if (c == quote) break;
if (c == '\0' || c == '\n') syntaxError("EOL while scanning string literal");
if (c == '\\') {
switch (parser->eatCharIncludeNewLine()) {
case '"': buff.push_back('"'); break;
case '\'': buff.push_back('\''); break;
case '\\': buff.push_back('\\'); break;
case 'n': buff.push_back('\n'); break;
case 'r': buff.push_back('\r'); break;
case 't': buff.push_back('\t'); break;
case '\n': case '\r': break;
default: syntaxError("invalid escape character");
}
} else {
buff.push_back(c);
}
}
return _Str(buff.data(), buff.size());
}
void eatString(char quote, bool fstr) {
_Str s = eatStringUntil(quote);
if(fstr){
parser->setNextToken(TK("@fstr"), vm->PyStr(s));
}else{
parser->setNextToken(TK("@str"), vm->PyStr(s));
}
}
void eatNumber() {
static const std::regex pattern("^(0x)?[0-9a-f]+(\\.[0-9]+)?");
std::smatch m;
const char* i = parser->token_start;
while(*i != '\n' && *i != '\0') i++;
std::string s = std::string(parser->token_start, i);
try{
if (std::regex_search(s, m, pattern)) {
// here is m.length()-1, since the first char is eaten by lexToken()
for(int j=0; j<m.length()-1; j++) parser->eatChar();
int base = 10;
size_t size;
if (m[1].matched) base = 16;
if (m[2].matched) {
if(base == 16) syntaxError("hex literal should not contain a dot");
parser->setNextToken(TK("@num"), vm->PyFloat(std::stod(m[0], &size)));
} else {
parser->setNextToken(TK("@num"), vm->PyInt(std::stoll(m[0], &size, base)));
}
if (size != m.length()) throw std::runtime_error("length mismatch");
}
}catch(std::exception& e){
syntaxError("invalid number literal");
}
}
// Lex the next token and set it as the next token.
void lexToken() {
parser->previous = parser->current;
parser->current = parser->nextToken();
//_Str _info = parser->current.info(); printf("%s\n", (const char*)_info);
while (parser->peekChar() != '\0') {
parser->token_start = parser->current_char;
char c = parser->eatCharIncludeNewLine();
switch (c) {
case '\'': case '"': eatString(c, false); return;
case '#': parser->skipLineComment(); break;
case '{': parser->setNextToken(TK("{")); return;
case '}': parser->setNextToken(TK("}")); return;
case ',': parser->setNextToken(TK(",")); return;
case ':': parser->setNextToken(TK(":")); return;
case ';': parser->setNextToken(TK(";")); return;
case '(': parser->setNextToken(TK("(")); return;
case ')': parser->setNextToken(TK(")")); return;
case '[': parser->setNextToken(TK("[")); return;
case ']': parser->setNextToken(TK("]")); return;
case '%': parser->setNextToken(TK("%")); return;
case '&': parser->setNextToken(TK("&")); return;
case '|': parser->setNextToken(TK("|")); return;
case '^': parser->setNextToken(TK("^")); return;
case '?': parser->setNextToken(TK("?")); return;
case '.': {
if(parser->matchChar('.')) {
if(parser->matchChar('.')) {
parser->setNextToken(TK("..."));
} else {
syntaxError("invalid token '..'");
}
} else {
parser->setNextToken(TK("."));
}
return;
}
case '=': parser->setNextTwoCharToken('=', TK("="), TK("==")); return;
case '+': parser->setNextTwoCharToken('=', TK("+"), TK("+=")); return;
case '>': {
if(parser->matchChar('=')) parser->setNextToken(TK(">="));
else if(parser->matchChar('>')) parser->setNextToken(TK(">>"));
else parser->setNextToken(TK(">"));
return;
}
case '<': {
if(parser->matchChar('=')) parser->setNextToken(TK("<="));
else if(parser->matchChar('<')) parser->setNextToken(TK("<<"));
else parser->setNextToken(TK("<"));
return;
}
case '-': {
if(parser->matchChar('=')) parser->setNextToken(TK("-="));
else if(parser->matchChar('>')) parser->setNextToken(TK("->"));
else parser->setNextToken(TK("-"));
return;
}
case '!':
if(parser->matchChar('=')) parser->setNextToken(TK("!="));
else syntaxError("expected '=' after '!'");
break;
case '*':
if (parser->matchChar('*')) {
parser->setNextToken(TK("**")); // '**'
} else {
parser->setNextTwoCharToken('=', TK("*"), TK("*="));
}
return;
case '/':
if(parser->matchChar('/')) {
parser->setNextTwoCharToken('=', TK("//"), TK("//="));
} else {
parser->setNextTwoCharToken('=', TK("/"), TK("/="));
}
return;
case '\r': break; // just ignore '\r'
case ' ': case '\t': parser->eatSpaces(); break;
case '\n': {
parser->setNextToken(TK("@eol")); while(parser->matchChar('\n'));
if(!parser->eatIndentation()) indentationError("unindent does not match any outer indentation level");
return;
}
default: {
if(c == 'f'){
if(parser->matchChar('\'')) {eatString('\'', true); return;}
if(parser->matchChar('"')) {eatString('"', true); return;}
}
if (isdigit(c)) {
eatNumber();
} else if (parser->isNameStart(c)) {
int ret = parser->eatName();
if(ret!=0) syntaxError("identifier is illegal, err " + std::to_string(ret));
} else {
syntaxError("unknown character: " + std::string(1, c));
}
return;
}
}
}
parser->token_start = parser->current_char;
parser->setNextToken(TK("@eof"));
}
_TokenType peek() {
return parser->current.type;
}
bool match(_TokenType expected) {
if (peek() != expected) return false;
lexToken();
return true;
}
void consume(_TokenType expected) {
if (!match(expected)){
_StrStream ss;
ss << "expected '" << TK_STR(expected) << "', but got '" << TK_STR(peek()) << "'";
syntaxError(ss.str());
}
}
bool matchNewLines(bool repl_throw=false) {
bool consumed = false;
if (peek() == TK("@eol")) {
while (peek() == TK("@eol")) lexToken();
consumed = true;
}
if (repl_throw && peek() == TK("@eof")){
throw NeedMoreLines(isCompilingClass);
}
return consumed;
}
bool matchEndStatement() {
if (match(TK(";"))) {
matchNewLines();
return true;
}
if (matchNewLines() || peek() == TK("@eof"))
return true;
if (peek() == TK("@dedent")) return true;
return false;
}
void consumeEndStatement() {
if (!matchEndStatement()) syntaxError("expected statement end");
}
void exprLiteral() {
PyVar value = parser->previous.value;
int index = getCode()->addConst(value);
emitCode(OP_LOAD_CONST, index);
}
void exprFString() {
static const std::regex pattern(R"(\{(.*?)\})");
PyVar value = parser->previous.value;
std::string s = vm->PyStr_AS_C(value).str();
std::sregex_iterator begin(s.begin(), s.end(), pattern);
std::sregex_iterator end;
int size = 0;
int i = 0;
for(auto it = begin; it != end; it++) {
std::smatch m = *it;
if (i < m.position()) {
std::string literal = s.substr(i, m.position() - i);
emitCode(OP_LOAD_CONST, getCode()->addConst(vm->PyStr(literal)));
size++;
}
emitCode(OP_LOAD_EVAL_FN);
emitCode(OP_LOAD_CONST, getCode()->addConst(vm->PyStr(m[1].str())));
emitCode(OP_CALL, 1);
size++;
i = m.position() + m.length();
}
if (i < s.size()) {
std::string literal = s.substr(i, s.size() - i);
emitCode(OP_LOAD_CONST, getCode()->addConst(vm->PyStr(literal)));
size++;
}
emitCode(OP_BUILD_STRING, size);
}
void exprLambda() {
_Func func = std::make_shared<Function>();
func->name = "<lambda>";
if(!match(TK(":"))){
__compileFunctionArgs(func);
consume(TK(":"));
}
func->code = std::make_shared<CodeObject>(parser->src, func->name);
this->codes.push(func->code);
EXPR_TUPLE();
emitCode(OP_RETURN_VALUE);
this->codes.pop();
emitCode(OP_LOAD_LAMBDA, getCode()->addConst(vm->PyFunction(func)));
}
void exprAssign() {
_TokenType op = parser->previous.type;
if(op == TK("=")) { // a = (expr)
EXPR_TUPLE();
emitCode(OP_STORE_PTR);
}else{ // a += (expr) -> a = a + (expr)
// TODO: optimization is needed for inplace operators
emitCode(OP_DUP_TOP);
EXPR();
switch (op) {
case TK("+="): emitCode(OP_BINARY_OP, 0); break;
case TK("-="): emitCode(OP_BINARY_OP, 1); break;
case TK("*="): emitCode(OP_BINARY_OP, 2); break;
case TK("/="): emitCode(OP_BINARY_OP, 3); break;
case TK("//="): emitCode(OP_BINARY_OP, 4); break;
default: UNREACHABLE();
}
emitCode(OP_STORE_PTR);
}
}
void exprComma() {
int size = 1; // an expr is in the stack now
do {
EXPR(); // NOTE: "1," will fail, "1,2" will be ok
size++;
} while(match(TK(",")));
emitCode(OP_BUILD_SMART_TUPLE, size);
}
void exprOr() {
int patch = emitCode(OP_JUMP_IF_TRUE_OR_POP);
parsePrecedence(PREC_LOGICAL_OR);
patchJump(patch);
}
void exprAnd() {
int patch = emitCode(OP_JUMP_IF_FALSE_OR_POP);
parsePrecedence(PREC_LOGICAL_AND);
patchJump(patch);
}
void exprTernary() {
int patch = emitCode(OP_POP_JUMP_IF_FALSE);
EXPR(); // if true
int patch2 = emitCode(OP_JUMP_ABSOLUTE);
consume(TK(":"));
patchJump(patch);
EXPR(); // if false
patchJump(patch2);
}
void exprBinaryOp() {
_TokenType op = parser->previous.type;
parsePrecedence((Precedence)(rules[op].precedence + 1));
switch (op) {
case TK("+"): emitCode(OP_BINARY_OP, 0); break;
case TK("-"): emitCode(OP_BINARY_OP, 1); break;
case TK("*"): emitCode(OP_BINARY_OP, 2); break;
case TK("/"): emitCode(OP_BINARY_OP, 3); break;
case TK("//"): emitCode(OP_BINARY_OP, 4); break;
case TK("%"): emitCode(OP_BINARY_OP, 5); break;
case TK("**"): emitCode(OP_BINARY_OP, 6); break;
case TK("<"): emitCode(OP_COMPARE_OP, 0); break;
case TK("<="): emitCode(OP_COMPARE_OP, 1); break;
case TK("=="): emitCode(OP_COMPARE_OP, 2); break;
case TK("!="): emitCode(OP_COMPARE_OP, 3); break;
case TK(">"): emitCode(OP_COMPARE_OP, 4); break;
case TK(">="): emitCode(OP_COMPARE_OP, 5); break;
case TK("in"): emitCode(OP_CONTAINS_OP, 0); break;
case TK("not in"): emitCode(OP_CONTAINS_OP, 1); break;
case TK("is"): emitCode(OP_IS_OP, 0); break;
case TK("is not"): emitCode(OP_IS_OP, 1); break;
case TK("<<"): emitCode(OP_BITWISE_OP, 0); break;
case TK(">>"): emitCode(OP_BITWISE_OP, 1); break;
case TK("&"): emitCode(OP_BITWISE_OP, 2); break;
case TK("|"): emitCode(OP_BITWISE_OP, 3); break;
case TK("^"): emitCode(OP_BITWISE_OP, 4); break;
default: UNREACHABLE();
}
}
void exprUnaryOp() {
_TokenType op = parser->previous.type;
matchNewLines();
parsePrecedence((Precedence)(PREC_UNARY + 1));
switch (op) {
case TK("-"): emitCode(OP_UNARY_NEGATIVE); break;
case TK("not"): emitCode(OP_UNARY_NOT); break;
case TK("&"): emitCode(OP_UNARY_REF); break;
case TK("*"): emitCode(OP_UNARY_DEREF); break;
default: UNREACHABLE();
}
}
void exprGrouping() {
matchNewLines(mode()==SINGLE_MODE);
EXPR_TUPLE();
matchNewLines(mode()==SINGLE_MODE);
consume(TK(")"));
}
void exprList() {
int _patch = emitCode(OP_NO_OP);
int _body_start = getCode()->co_code.size();
int ARGC = 0;
do {
matchNewLines(mode()==SINGLE_MODE);
if (peek() == TK("]")) break;
EXPR(); ARGC++;
matchNewLines(mode()==SINGLE_MODE);
if(ARGC == 1 && match(TK("for"))) goto __LISTCOMP;
} while (match(TK(",")));
matchNewLines(mode()==SINGLE_MODE);
consume(TK("]"));
emitCode(OP_BUILD_LIST, ARGC);
return;
__LISTCOMP:
int _body_end = getCode()->co_code.size();
getCode()->co_code[_patch].op = OP_JUMP_ABSOLUTE;
getCode()->co_code[_patch].arg = _body_end;
emitCode(OP_BUILD_LIST, 0);
EXPR_FOR_VARS();consume(TK("in"));EXPR_TUPLE();
matchNewLines(mode()==SINGLE_MODE);
int _skipPatch = emitCode(OP_JUMP_ABSOLUTE);
int _cond_start = getCode()->co_code.size();
if(match(TK("if"))) EXPR_TUPLE();
int _cond_end = getCode()->co_code.size();
patchJump(_skipPatch);
emitCode(OP_GET_ITER);
Loop& loop = enterLoop();
int patch = emitCode(OP_FOR_ITER);
if(_cond_end != _cond_start) { // there is an if condition
getCode()->__moveToEnd(_cond_start, _cond_end);
int ifpatch = emitCode(OP_POP_JUMP_IF_FALSE);
getCode()->__moveToEnd(_body_start, _body_end);
emitCode(OP_LIST_APPEND);
patchJump(ifpatch);
}else{
getCode()->__moveToEnd(_body_start, _body_end);
emitCode(OP_LIST_APPEND);
}
emitCode(OP_JUMP_ABSOLUTE, loop.start); keepOpcodeLine();
patchJump(patch);
exitLoop();
matchNewLines(mode()==SINGLE_MODE);
consume(TK("]"));
}
void exprMap() {
int size = 0;
do {
matchNewLines(mode()==SINGLE_MODE);
if (peek() == TK("}")) break;
EXPR();consume(TK(":"));EXPR();
size++;
matchNewLines(mode()==SINGLE_MODE);
} while (match(TK(",")));
matchNewLines();
consume(TK("}"));
emitCode(OP_BUILD_MAP, size);
}
void exprCall() {
int ARGC = 0;
do {
matchNewLines(mode()==SINGLE_MODE);
if (peek() == TK(")")) break;
EXPR();
ARGC++;
matchNewLines(mode()==SINGLE_MODE);
} while (match(TK(",")));
consume(TK(")"));
emitCode(OP_CALL, ARGC);
}
void exprName() {
Token tkname = parser->previous;
int index = getCode()->addName(
tkname.str(),
codes.size()>1 ? NAME_LOCAL : NAME_GLOBAL
);
emitCode(OP_LOAD_NAME_PTR, index);
}
void exprAttrib() {
consume(TK("@id"));
const _Str& name = parser->previous.str();
int index = getCode()->addName(name, NAME_ATTR);
emitCode(OP_BUILD_ATTR_PTR, index);
}
void exprAttribPtr(){
consume(TK("@id"));
const _Str& name = parser->previous.str();
int index = getCode()->addName(name, NAME_ATTR);
emitCode(OP_BUILD_ATTR_PTR_PTR, index);
}
// [:], [:b]
// [a], [a:], [a:b]
void exprSubscript() {
if(match(TK(":"))){
emitCode(OP_LOAD_NONE);
if(match(TK("]"))){
emitCode(OP_LOAD_NONE);
}else{
EXPR();
consume(TK("]"));
}
emitCode(OP_BUILD_SLICE);
}else{
EXPR();
if(match(TK(":"))){
if(match(TK("]"))){
emitCode(OP_LOAD_NONE);
}else{
EXPR();
consume(TK("]"));
}
emitCode(OP_BUILD_SLICE);
}else{
consume(TK("]"));
}
}
emitCode(OP_BUILD_INDEX_PTR);
}
void exprValue() {
_TokenType op = parser->previous.type;
switch (op) {
case TK("None"): emitCode(OP_LOAD_NONE); break;
case TK("True"): emitCode(OP_LOAD_TRUE); break;
case TK("False"): emitCode(OP_LOAD_FALSE); break;
case TK("..."): emitCode(OP_LOAD_ELLIPSIS); break;
default: UNREACHABLE();
}
}
void keepOpcodeLine(){
int i = getCode()->co_code.size() - 1;
getCode()->co_code[i].line = getCode()->co_code[i-1].line;
}
int emitCode(Opcode opcode, int arg=-1) {
int line = parser->previous.line;
getCode()->co_code.push_back(
ByteCode{(uint8_t)opcode, arg, (uint16_t)line}
);
return getCode()->co_code.size() - 1;
}
inline void patchJump(int addr_index) {
int target = getCode()->co_code.size();
getCode()->co_code[addr_index].arg = target;
}
void compileBlockBody(){
__compileBlockBody(&Compiler::compileStatement);
}
void __compileBlockBody(CompilerAction action) {
consume(TK(":"));
if(!matchNewLines(mode()==SINGLE_MODE)){
syntaxError("expected a new line after ':'");
}
consume(TK("@indent"));
while (peek() != TK("@dedent")) {
matchNewLines();
(this->*action)();
matchNewLines();
}
consume(TK("@dedent"));
}
Token compileImportPath() {
consume(TK("@id"));
Token tkmodule = parser->previous;
int index = getCode()->addName(tkmodule.str(), NAME_GLOBAL);
emitCode(OP_IMPORT_NAME, index);
return tkmodule;
}
// import a as b
void compileRegularImport() {
do {
Token tkmodule = compileImportPath();
if (match(TK("as"))) {
consume(TK("@id"));
tkmodule = parser->previous;
}
int index = getCode()->addName(tkmodule.str(), NAME_GLOBAL);
emitCode(OP_STORE_NAME_PTR, index);
} while (match(TK(",")));
consumeEndStatement();
}
// from a import b as c, d as e
void compileFromImport() {
Token tkmodule = compileImportPath();
consume(TK("import"));
do {
consume(TK("@id"));
Token tkname = parser->previous;
int index = getCode()->addName(tkname.str(), NAME_GLOBAL);
emitCode(OP_BUILD_ATTR_PTR, index);
if (match(TK("as"))) {
consume(TK("@id"));
tkname = parser->previous;
}
index = getCode()->addName(tkname.str(), NAME_GLOBAL);
emitCode(OP_STORE_NAME_PTR, index);
} while (match(TK(",")));
consumeEndStatement();
}
void parsePrecedence(Precedence precedence) {
lexToken();
GrammarFn prefix = rules[parser->previous.type].prefix;
if (prefix == nullptr) syntaxError(_Str("expected an expression, but got ") + TK_STR(parser->previous.type));
(this->*prefix)();
while (rules[peek()].precedence >= precedence) {
lexToken();
_TokenType op = parser->previous.type;
GrammarFn infix = rules[op].infix;
if(infix == nullptr) throw std::runtime_error("(infix == nullptr) is true");
(this->*infix)();
}
}
void compileIfStatement() {
matchNewLines();
EXPR_TUPLE();
int ifpatch = emitCode(OP_POP_JUMP_IF_FALSE);
compileBlockBody();
if (match(TK("elif"))) {
int exit_jump = emitCode(OP_JUMP_ABSOLUTE);
patchJump(ifpatch);
compileIfStatement();
patchJump(exit_jump);
} else if (match(TK("else"))) {
int exit_jump = emitCode(OP_JUMP_ABSOLUTE);
patchJump(ifpatch);
compileBlockBody();
patchJump(exit_jump);
} else {
patchJump(ifpatch);
}
}
Loop& enterLoop(){
Loop lp((int)getCode()->co_code.size());
loops.push(lp);
return loops.top();
}
void exitLoop(){
Loop& lp = loops.top();
for(int addr : lp.breaks) patchJump(addr);
loops.pop();
}
void compileWhileLoop() {
Loop& loop = enterLoop();
EXPR_TUPLE();
int patch = emitCode(OP_POP_JUMP_IF_FALSE);
compileBlockBody();
emitCode(OP_JUMP_ABSOLUTE, loop.start); keepOpcodeLine();
patchJump(patch);
exitLoop();
}
void EXPR_FOR_VARS(){
int size = 0;
do {
consume(TK("@id"));
exprName(); size++;
} while (match(TK(",")));
if(size > 1) emitCode(OP_BUILD_SMART_TUPLE, size);
}
void compileForLoop() {
EXPR_FOR_VARS();consume(TK("in"));EXPR_TUPLE();
emitCode(OP_GET_ITER);
Loop& loop = enterLoop();
int patch = emitCode(OP_FOR_ITER);
compileBlockBody();
emitCode(OP_JUMP_ABSOLUTE, loop.start); keepOpcodeLine();
patchJump(patch);
exitLoop();
}
void compileStatement() {
if (match(TK("break"))) {
if (loops.empty()) syntaxError("'break' outside loop");
consumeEndStatement();
int patch = emitCode(OP_SAFE_JUMP_ABSOLUTE);
getLoop().breaks.push_back(patch);
} else if (match(TK("continue"))) {
if (loops.empty()) syntaxError("'continue' not properly in loop");
consumeEndStatement();
emitCode(OP_JUMP_ABSOLUTE, getLoop().start);
} else if (match(TK("return"))) {
if (codes.size() == 1)
syntaxError("'return' outside function");
if(matchEndStatement()){
emitCode(OP_LOAD_NONE);
}else{
EXPR_TUPLE();
consumeEndStatement();
}
emitCode(OP_RETURN_VALUE);
} else if (match(TK("if"))) {
compileIfStatement();
} else if (match(TK("while"))) {
compileWhileLoop();
} else if (match(TK("for"))) {
compileForLoop();
} else if(match(TK("assert"))){
EXPR();
emitCode(OP_ASSERT);
consumeEndStatement();
} else if(match(TK("with"))){
EXPR();
consume(TK("as"));
consume(TK("@id"));
Token tkname = parser->previous;
int index = getCode()->addName(
tkname.str(),
codes.size()>1 ? NAME_LOCAL : NAME_GLOBAL
);
emitCode(OP_STORE_NAME_PTR, index);
emitCode(OP_LOAD_NAME_PTR, index);
emitCode(OP_WITH_ENTER);
compileBlockBody();
emitCode(OP_LOAD_NAME_PTR, index);
emitCode(OP_WITH_EXIT);
} else if(match(TK("label"))){
if(mode() != EXEC_MODE) syntaxError("'label' is only available in EXEC_MODE");
consume(TK(".")); consume(TK("@id"));
getCode()->addLabel(parser->previous.str());
consumeEndStatement();
} else if(match(TK("goto"))){
// https://entrian.com/goto/
if(mode() != EXEC_MODE) syntaxError("'goto' is only available in EXEC_MODE");
consume(TK(".")); consume(TK("@id"));
emitCode(OP_LOAD_CONST, getCode()->addConst(vm->PyStr(parser->previous.str())));
emitCode(OP_GOTO);
consumeEndStatement();
} else if(match(TK("raise"))){
consume(TK("@id")); // dummy exception type
emitCode(OP_LOAD_CONST, getCode()->addConst(vm->PyStr(parser->previous.str())));
consume(TK("("));EXPR();consume(TK(")"));
emitCode(OP_RAISE_ERROR);
consumeEndStatement();
} else if(match(TK("del"))){
EXPR();
emitCode(OP_DELETE_PTR);
consumeEndStatement();
} else if(match(TK("global"))){
consume(TK("@id"));
getCode()->co_global_names.push_back(parser->previous.str());
consumeEndStatement();
} else if(match(TK("pass"))){
consumeEndStatement();
} else {
EXPR_ANY();
consumeEndStatement();
// If last op is not an assignment, pop the result.
uint8_t lastOp = getCode()->co_code.back().op;
if( lastOp != OP_STORE_NAME_PTR && lastOp != OP_STORE_PTR){
if(mode()==SINGLE_MODE && parser->indents.top() == 0){
emitCode(OP_PRINT_EXPR);
}
emitCode(OP_POP_TOP);
}
}
}
void compileClass(){
consume(TK("@id"));
int clsNameIdx = getCode()->addName(parser->previous.str(), NAME_GLOBAL);
int superClsNameIdx = -1;
if(match(TK("("))){
consume(TK("@id"));
superClsNameIdx = getCode()->addName(parser->previous.str(), NAME_GLOBAL);
consume(TK(")"));
}
emitCode(OP_LOAD_NONE);
isCompilingClass = true;
__compileBlockBody(&Compiler::compileFunction);
isCompilingClass = false;
if(superClsNameIdx == -1) emitCode(OP_LOAD_NONE);
else emitCode(OP_LOAD_NAME_PTR, superClsNameIdx);
emitCode(OP_BUILD_CLASS, clsNameIdx);
}
void __compileFunctionArgs(_Func func){
int state = 0; // 0 for args, 1 for *args, 2 for k=v, 3 for **kwargs
do {
if(state == 3) syntaxError("**kwargs should be the last argument");
matchNewLines();
if(match(TK("*"))){
if(state < 1) state = 1;
else syntaxError("*args should be placed before **kwargs");
}
else if(match(TK("**"))){
state = 3;
}
consume(TK("@id"));
const _Str& name = parser->previous.str();
if(func->hasName(name)) syntaxError("duplicate argument name");
if(state == 0 && peek() == TK("=")) state = 2;
switch (state)
{
case 0: func->args.push_back(name); break;
case 1: func->starredArg = name; state+=1; break;
case 2:
consume(TK("="));
func->kwArgs[name] = consumeLiteral();
func->kwArgsOrder.push_back(name);
break;
case 3: syntaxError("**kwargs is not supported yet"); break;
}
} while (match(TK(",")));
}
void compileFunction(){
if(isCompilingClass){
if(match(TK("pass"))) return;
consume(TK("def"));
}
_Func func = std::make_shared<Function>();
consume(TK("@id"));
func->name = parser->previous.str();
if (match(TK("(")) && !match(TK(")"))) {
__compileFunctionArgs(func);
consume(TK(")"));
}
func->code = std::make_shared<CodeObject>(parser->src, func->name);
this->codes.push(func->code);
compileBlockBody();
this->codes.pop();
emitCode(OP_LOAD_CONST, getCode()->addConst(vm->PyFunction(func)));
if(!isCompilingClass) emitCode(OP_STORE_FUNCTION);
}
PyVar consumeLiteral(){
if(match(TK("-"))){
consume(TK("@num"));
PyVar val = parser->previous.value;
return vm->numNegated(val);
}
if(match(TK("@num"))) return parser->previous.value;
if(match(TK("@str"))) return parser->previous.value;
if(match(TK("True"))) return vm->PyBool(true);
if(match(TK("False"))) return vm->PyBool(false);
if(match(TK("None"))) return vm->None;
if(match(TK("..."))) return vm->Ellipsis;
syntaxError(_Str("expect a literal, not ") + TK_STR(parser->current.type));
return nullptr;
}
void compileTopLevelStatement() {
if (match(TK("class"))) {
compileClass();
} else if (match(TK("def"))) {
compileFunction();
} else if (match(TK("import"))) {
compileRegularImport();
} else if (match(TK("from"))) {
compileFromImport();
} else {
compileStatement();
}
}
_Code __fillCode(){
_Code code = std::make_shared<CodeObject>(parser->src, _Str("<module>"));
codes.push(code);
// Lex initial tokens. current <-- next.
lexToken();
lexToken();
matchNewLines();
if(mode()==EVAL_MODE) {
EXPR_TUPLE();
consume(TK("@eof"));
return code;
}
while (!match(TK("@eof"))) {
compileTopLevelStatement();
matchNewLines();
}
return code;
}
/***** Error Reporter *****/
_Str getLineSnapshot(){
int lineno = parser->current_line;
if(parser->peekChar() == '\n') lineno--;
return parser->src->snapshot(lineno);
}
void syntaxError(_Str msg){
throw CompileError("SyntaxError", msg, getLineSnapshot());
}
void indentationError(_Str msg){
throw CompileError("IndentationError", msg, getLineSnapshot());
}
void unexpectedError(_Str msg){
throw CompileError("UnexpectedError", msg, getLineSnapshot());
}
};
_Code compile(VM* vm, const char* source, _Str filename, CompileMode mode=EXEC_MODE) {
Compiler compiler(vm, source, filename, mode);
try{
return compiler.__fillCode();
}catch(std::exception& e){
if(const _Error* _ = dynamic_cast<const _Error*>(&e)){
(*vm->_stderr) << e.what() << '\n';
}else{
auto ce = CompileError("UnexpectedError", e.what(), compiler.getLineSnapshot());
(*vm->_stderr) << ce.what() << '\n';
}
return nullptr;
}
}