pocketpy/src/vm.h
blueloveTH 5e13149a4d up
2023-04-08 16:22:41 +08:00

968 lines
32 KiB
C++

#pragma once
#include "common.h"
#include "frame.h"
#include "error.h"
#include "gc.h"
#include "memory.h"
#include "obj.h"
#include "str.h"
#include <memory>
namespace pkpy{
Str _read_file_cwd(const Str& name, bool* ok);
#define DEF_NATIVE_2(ctype, ptype) \
template<> inline ctype py_cast<ctype>(VM* vm, PyObject* obj) { \
vm->check_type(obj, vm->ptype); \
return OBJ_GET(ctype, obj); \
} \
template<> inline ctype _py_cast<ctype>(VM* vm, PyObject* obj) { \
return OBJ_GET(ctype, obj); \
} \
template<> inline ctype& py_cast<ctype&>(VM* vm, PyObject* obj) { \
vm->check_type(obj, vm->ptype); \
return OBJ_GET(ctype, obj); \
} \
template<> inline ctype& _py_cast<ctype&>(VM* vm, PyObject* obj) { \
return OBJ_GET(ctype, obj); \
} \
inline PyObject* py_var(VM* vm, const ctype& value) { return vm->heap.gcnew(vm->ptype, value);} \
inline PyObject* py_var(VM* vm, ctype&& value) { return vm->heap.gcnew(vm->ptype, std::move(value));}
class Generator: public BaseIter {
Frame_ frame;
int state; // 0,1,2
public:
Generator(VM* vm, Frame_&& frame)
: BaseIter(vm), frame(std::move(frame)), state(0) {}
PyObject* next() override;
void _gc_mark() const override;
};
struct PyTypeInfo{
PyObject* obj;
Type base;
Str name;
};
class VM {
VM* vm; // self reference for simplify code
public:
ManagedHeap heap;
stack< Frame_ > callstack;
std::vector<PyTypeInfo> _all_types;
PyObject* run_frame(Frame* frame);
NameDict _modules; // loaded modules
std::map<StrName, Str> _lazy_modules; // lazy loaded modules
PyObject* _py_op_call;
PyObject* _py_op_yield;
PyObject* _py_null;
PyObject* None;
PyObject* True;
PyObject* False;
PyObject* Ellipsis;
PyObject* builtins; // builtins module
PyObject* _main; // __main__ module
bool use_stdio;
std::ostream* _stdout;
std::ostream* _stderr;
int recursionlimit = 1000;
// for quick access
Type tp_object, tp_type, tp_int, tp_float, tp_bool, tp_str;
Type tp_list, tp_tuple;
Type tp_function, tp_native_function, tp_iterator, tp_bound_method;
Type tp_slice, tp_range, tp_module;
Type tp_super, tp_exception, tp_star_wrapper;
VM(bool use_stdio) : heap(this){
this->vm = this;
this->use_stdio = use_stdio;
if(use_stdio){
this->_stdout = &std::cout;
this->_stderr = &std::cerr;
}else{
this->_stdout = new StrStream();
this->_stderr = new StrStream();
}
init_builtin_types();
}
Frame* top_frame() const {
#if DEBUG_EXTRA_CHECK
if(callstack.empty()) UNREACHABLE();
#endif
return callstack.top().get();
}
PyObject* asStr(PyObject* obj){
PyObject* self;
PyObject* f = get_unbound_method(obj, __str__, &self, false);
if(self != _py_null) return call(f, Args{self});
return asRepr(obj);
}
PyObject* asIter(PyObject* obj){
if(is_type(obj, tp_iterator)) return obj;
PyObject* self;
PyObject* iter_f = get_unbound_method(obj, __iter__, &self, false);
if(self != _py_null) return call(iter_f, Args{self});
TypeError(OBJ_NAME(_t(obj)).escape(true) + " object is not iterable");
return nullptr;
}
PyObject* asList(PyObject* iterable){
if(is_type(iterable, tp_list)) return iterable;
return call(_t(tp_list), Args{iterable});
}
PyObject* find_name_in_mro(PyObject* cls, StrName name){
PyObject* val;
do{
val = cls->attr().try_get(name);
if(val != nullptr) return val;
Type cls_t = OBJ_GET(Type, cls);
Type base = _all_types[cls_t].base;
if(base.index == -1) break;
cls = _all_types[base].obj;
}while(true);
return nullptr;
}
bool isinstance(PyObject* obj, Type cls_t){
Type obj_t = OBJ_GET(Type, _t(obj));
do{
if(obj_t == cls_t) return true;
Type base = _all_types[obj_t].base;
if(base.index == -1) break;
obj_t = base;
}while(true);
return false;
}
PyObject* fast_call(StrName name, Args&& args){
PyObject* val = find_name_in_mro(_t(args[0]), name);
if(val != nullptr) return call(val, std::move(args));
AttributeError(args[0], name);
return nullptr;
}
template<typename ArgT>
std::enable_if_t<std::is_same_v<std::decay_t<ArgT>, Args>, PyObject*>
call(PyObject* callable, ArgT&& args){
return call(callable, std::forward<ArgT>(args), no_arg(), false);
}
PyObject* exec(Str source, Str filename, CompileMode mode, PyObject* _module=nullptr){
if(_module == nullptr) _module = _main;
try {
CodeObject_ code = compile(source, filename, mode);
#if DEBUG_DIS_EXEC
if(_module == _main) std::cout << disassemble(code) << '\n';
#endif
return _exec(code, _module);
}catch (const Exception& e){
*_stderr << e.summary() << '\n';
}
#if !DEBUG_FULL_EXCEPTION
catch (const std::exception& e) {
*_stderr << "An std::exception occurred! It could be a bug.\n";
*_stderr << e.what() << '\n';
}
#endif
callstack = {};
return nullptr;
}
template<typename ...Args>
Frame_ _new_frame(Args&&... args){
if(callstack.size() > recursionlimit){
_error("RecursionError", "maximum recursion depth exceeded");
}
Frame* frame = new(pool128.alloc<Frame>()) Frame(std::forward<Args>(args)...);
return Frame_(frame);
}
template<typename ...Args>
PyObject* _exec(Args&&... args){
callstack.push(_new_frame(std::forward<Args>(args)...));
return _exec();
}
PyObject* property(NativeFuncRaw fget){
PyObject* p = builtins->attr("property");
PyObject* method = heap.gcnew(tp_native_function, NativeFunc(fget, 1, false));
return call(p, Args{method});
}
PyObject* new_type_object(PyObject* mod, StrName name, Type base){
PyObject* obj = heap._new<Type>(tp_type, _all_types.size());
PyTypeInfo info{
.obj = obj,
.base = base,
.name = (mod!=nullptr && mod!=builtins) ? Str(OBJ_NAME(mod)+"."+name.str()): name.str()
};
if(mod != nullptr) mod->attr().set(name, obj);
_all_types.push_back(info);
return obj;
}
Type _new_type_object(StrName name, Type base=0) {
PyObject* obj = new_type_object(nullptr, name, base);
return OBJ_GET(Type, obj);
}
PyObject* _find_type(const Str& type){
PyObject* obj = builtins->attr().try_get(type);
if(obj == nullptr){
for(auto& t: _all_types) if(t.name == type) return t.obj;
throw std::runtime_error("type not found: " + type);
}
return obj;
}
template<int ARGC>
void bind_func(Str type, Str name, NativeFuncRaw fn) {
bind_func<ARGC>(_find_type(type), name, fn);
}
template<int ARGC>
void bind_method(Str type, Str name, NativeFuncRaw fn) {
bind_method<ARGC>(_find_type(type), name, fn);
}
template<int ARGC, typename... Args>
void bind_static_method(Args&&... args) {
bind_func<ARGC>(std::forward<Args>(args)...);
}
template<int ARGC>
void _bind_methods(std::vector<Str> types, Str name, NativeFuncRaw fn) {
for(auto& type: types) bind_method<ARGC>(type, name, fn);
}
template<int ARGC>
void bind_builtin_func(Str name, NativeFuncRaw fn) {
bind_func<ARGC>(builtins, name, fn);
}
int normalized_index(int index, int size){
if(index < 0) index += size;
if(index < 0 || index >= size){
IndexError(std::to_string(index) + " not in [0, " + std::to_string(size) + ")");
}
return index;
}
template<typename P>
PyObject* PyIter(P&& value) {
static_assert(std::is_base_of_v<BaseIter, std::decay_t<P>>);
return heap.gcnew<P>(tp_iterator, std::forward<P>(value));
}
BaseIter* PyIter_AS_C(PyObject* obj)
{
check_type(obj, tp_iterator);
return static_cast<BaseIter*>(obj->value());
}
/***** Error Reporter *****/
void _error(StrName name, const Str& msg){
_error(Exception(name, msg));
}
void _raise(){
bool ok = top_frame()->jump_to_exception_handler();
if(ok) throw HandledException();
else throw UnhandledException();
}
void IOError(const Str& msg) { _error("IOError", msg); }
void NotImplementedError(){ _error("NotImplementedError", ""); }
void TypeError(const Str& msg){ _error("TypeError", msg); }
void ZeroDivisionError(){ _error("ZeroDivisionError", "division by zero"); }
void IndexError(const Str& msg){ _error("IndexError", msg); }
void ValueError(const Str& msg){ _error("ValueError", msg); }
void NameError(StrName name){ _error("NameError", "name " + name.str().escape(true) + " is not defined"); }
void AttributeError(PyObject* obj, StrName name){
// OBJ_NAME calls getattr, which may lead to a infinite recursion
_error("AttributeError", "type " + OBJ_NAME(_t(obj)).escape(true) + " has no attribute " + name.str().escape(true));
}
void AttributeError(Str msg){ _error("AttributeError", msg); }
void check_type(PyObject* obj, Type type){
if(is_type(obj, type)) return;
TypeError("expected " + OBJ_NAME(_t(type)).escape(true) + ", but got " + OBJ_NAME(_t(obj)).escape(true));
}
PyObject* _t(Type t){
return _all_types[t.index].obj;
}
PyObject* _t(PyObject* obj){
if(is_int(obj)) return _t(tp_int);
if(is_float(obj)) return _t(tp_float);
return _all_types[OBJ_GET(Type, _t(obj->type)).index].obj;
}
~VM() {
heap.collect();
if(!use_stdio){
delete _stdout;
delete _stderr;
}
}
CodeObject_ compile(Str source, Str filename, CompileMode mode);
PyObject* num_negated(PyObject* obj);
f64 num_to_float(PyObject* obj);
bool asBool(PyObject* obj);
i64 hash(PyObject* obj);
PyObject* asRepr(PyObject* obj);
PyObject* new_module(StrName name);
Str disassemble(CodeObject_ co);
void init_builtin_types();
PyObject* call(PyObject* callable, Args args, const Args& kwargs, bool opCall);
void unpack_args(Args& args);
PyObject* getattr(PyObject* obj, StrName name, bool throw_err=true);
PyObject* get_unbound_method(PyObject* obj, StrName name, PyObject** self, bool throw_err=true, bool fallback=false);
template<typename T>
void setattr(PyObject* obj, StrName name, T&& value);
template<int ARGC>
void bind_method(PyObject*, Str, NativeFuncRaw);
template<int ARGC>
void bind_func(PyObject*, Str, NativeFuncRaw);
void _error(Exception);
PyObject* _exec();
void post_init();
};
inline PyObject* NativeFunc::operator()(VM* vm, Args& args) const{
int args_size = args.size() - (int)method; // remove self
if(argc != -1 && args_size != argc) {
vm->TypeError("expected " + std::to_string(argc) + " arguments, but got " + std::to_string(args_size));
}
return f(vm, args);
}
inline void CodeObject::optimize(VM* vm){
// here we simple pass all names, but only some of them are NAME_LOCAL
// TODO: ...
uint32_t base_n = (uint32_t)(names.size() / kLocalsLoadFactor + 0.5);
perfect_locals_capacity = find_next_capacity(base_n);
perfect_hash_seed = find_perfect_hash_seed(perfect_locals_capacity, names);
// pre-compute sn in co_consts
for(int i=0; i<consts.size(); i++){
if(is_type(consts[i], vm->tp_str)){
Str& s = OBJ_GET(Str, consts[i]);
s._cached_sn_index = StrName::get(s.c_str()).index;
}
}
}
DEF_NATIVE_2(Str, tp_str)
DEF_NATIVE_2(List, tp_list)
DEF_NATIVE_2(Tuple, tp_tuple)
DEF_NATIVE_2(Function, tp_function)
DEF_NATIVE_2(NativeFunc, tp_native_function)
DEF_NATIVE_2(BoundMethod, tp_bound_method)
DEF_NATIVE_2(Range, tp_range)
DEF_NATIVE_2(Slice, tp_slice)
DEF_NATIVE_2(Exception, tp_exception)
DEF_NATIVE_2(StarWrapper, tp_star_wrapper)
#define PY_CAST_INT(T) \
template<> inline T py_cast<T>(VM* vm, PyObject* obj){ \
vm->check_type(obj, vm->tp_int); \
return (T)(BITS(obj) >> 2); \
} \
template<> inline T _py_cast<T>(VM* vm, PyObject* obj){ \
return (T)(BITS(obj) >> 2); \
}
PY_CAST_INT(char)
PY_CAST_INT(short)
PY_CAST_INT(int)
PY_CAST_INT(long)
PY_CAST_INT(long long)
PY_CAST_INT(unsigned char)
PY_CAST_INT(unsigned short)
PY_CAST_INT(unsigned int)
PY_CAST_INT(unsigned long)
PY_CAST_INT(unsigned long long)
template<> inline float py_cast<float>(VM* vm, PyObject* obj){
vm->check_type(obj, vm->tp_float);
i64 bits = BITS(obj);
bits = (bits >> 2) << 2;
return BitsCvt(bits)._float;
}
template<> inline float _py_cast<float>(VM* vm, PyObject* obj){
i64 bits = BITS(obj);
bits = (bits >> 2) << 2;
return BitsCvt(bits)._float;
}
template<> inline double py_cast<double>(VM* vm, PyObject* obj){
vm->check_type(obj, vm->tp_float);
i64 bits = BITS(obj);
bits = (bits >> 2) << 2;
return BitsCvt(bits)._float;
}
template<> inline double _py_cast<double>(VM* vm, PyObject* obj){
i64 bits = BITS(obj);
bits = (bits >> 2) << 2;
return BitsCvt(bits)._float;
}
#define PY_VAR_INT(T) \
inline PyObject* py_var(VM* vm, T _val){ \
i64 val = static_cast<i64>(_val); \
if(((val << 2) >> 2) != val){ \
vm->_error("OverflowError", std::to_string(val) + " is out of range"); \
} \
val = (val << 2) | 0b01; \
return reinterpret_cast<PyObject*>(val); \
}
PY_VAR_INT(char)
PY_VAR_INT(short)
PY_VAR_INT(int)
PY_VAR_INT(long)
PY_VAR_INT(long long)
PY_VAR_INT(unsigned char)
PY_VAR_INT(unsigned short)
PY_VAR_INT(unsigned int)
PY_VAR_INT(unsigned long)
PY_VAR_INT(unsigned long long)
#define PY_VAR_FLOAT(T) \
inline PyObject* py_var(VM* vm, T _val){ \
f64 val = static_cast<f64>(_val); \
i64 bits = BitsCvt(val)._int; \
bits = (bits >> 2) << 2; \
bits |= 0b10; \
return reinterpret_cast<PyObject*>(bits); \
}
PY_VAR_FLOAT(float)
PY_VAR_FLOAT(double)
inline PyObject* py_var(VM* vm, bool val){
return val ? vm->True : vm->False;
}
template<> inline bool py_cast<bool>(VM* vm, PyObject* obj){
vm->check_type(obj, vm->tp_bool);
return obj == vm->True;
}
template<> inline bool _py_cast<bool>(VM* vm, PyObject* obj){
return obj == vm->True;
}
inline PyObject* py_var(VM* vm, const char val[]){
return VAR(Str(val));
}
inline PyObject* py_var(VM* vm, std::string val){
return VAR(Str(std::move(val)));
}
template<typename T>
void _check_py_class(VM* vm, PyObject* obj){
vm->check_type(obj, T::_type(vm));
}
inline PyObject* VM::num_negated(PyObject* obj){
if (is_int(obj)){
return VAR(-CAST(i64, obj));
}else if(is_float(obj)){
return VAR(-CAST(f64, obj));
}
TypeError("expected 'int' or 'float', got " + OBJ_NAME(_t(obj)).escape(true));
return nullptr;
}
inline f64 VM::num_to_float(PyObject* obj){
if(is_float(obj)){
return CAST(f64, obj);
} else if (is_int(obj)){
return (f64)CAST(i64, obj);
}
TypeError("expected 'int' or 'float', got " + OBJ_NAME(_t(obj)).escape(true));
return 0;
}
inline bool VM::asBool(PyObject* obj){
if(is_type(obj, tp_bool)) return obj == True;
if(obj == None) return false;
if(is_type(obj, tp_int)) return CAST(i64, obj) != 0;
if(is_type(obj, tp_float)) return CAST(f64, obj) != 0.0;
PyObject* self;
PyObject* len_f = get_unbound_method(obj, __len__, &self, false);
if(self != _py_null){
PyObject* ret = call(len_f, Args{self});
return CAST(i64, ret) > 0;
}
return true;
}
inline i64 VM::hash(PyObject* obj){
if (is_type(obj, tp_str)) return CAST(Str&, obj).hash();
if (is_int(obj)) return CAST(i64, obj);
if (is_type(obj, tp_tuple)) {
i64 x = 1000003;
const Tuple& items = CAST(Tuple&, obj);
for (int i=0; i<items.size(); i++) {
i64 y = hash(items[i]);
// recommended by Github Copilot
x = x ^ (y + 0x9e3779b9 + (x << 6) + (x >> 2));
}
return x;
}
if (is_type(obj, tp_type)) return BITS(obj);
if (is_type(obj, tp_bool)) return _CAST(bool, obj) ? 1 : 0;
if (is_float(obj)){
f64 val = CAST(f64, obj);
return (i64)std::hash<f64>()(val);
}
TypeError("unhashable type: " + OBJ_NAME(_t(obj)).escape(true));
return 0;
}
inline PyObject* VM::asRepr(PyObject* obj){
// TODO: fastcall does not take care of super() proxy!
return fast_call(__repr__, Args{obj});
}
inline PyObject* VM::new_module(StrName name) {
PyObject* obj = heap._new<DummyModule>(tp_module, DummyModule());
obj->attr().set(__name__, VAR(name.str()));
// we do not allow override in order to avoid memory leak
// it is because Module objects are not garbage collected
if(_modules.contains(name)) UNREACHABLE();
_modules.set(name, obj);
return obj;
}
inline Str VM::disassemble(CodeObject_ co){
auto pad = [](const Str& s, const int n){
if(s.size() >= n) return s.substr(0, n);
return s + std::string(n - s.size(), ' ');
};
std::vector<int> jumpTargets;
for(auto byte : co->codes){
if(byte.op == OP_JUMP_ABSOLUTE || byte.op == OP_POP_JUMP_IF_FALSE){
jumpTargets.push_back(byte.arg);
}
}
StrStream ss;
int prev_line = -1;
for(int i=0; i<co->codes.size(); i++){
const Bytecode& byte = co->codes[i];
Str line = std::to_string(byte.line);
if(byte.line == prev_line) line = "";
else{
if(prev_line != -1) ss << "\n";
prev_line = byte.line;
}
std::string pointer;
if(std::find(jumpTargets.begin(), jumpTargets.end(), i) != jumpTargets.end()){
pointer = "-> ";
}else{
pointer = " ";
}
ss << pad(line, 8) << pointer << pad(std::to_string(i), 3);
ss << " " << pad(OP_NAMES[byte.op], 20) << " ";
// ss << pad(byte.arg == -1 ? "" : std::to_string(byte.arg), 5);
Str argStr = byte.arg == -1 ? "" : std::to_string(byte.arg);
switch(byte.op){
case OP_LOAD_CONST:
argStr += " (" + CAST(Str, asRepr(co->consts[byte.arg])) + ")";
break;
case OP_LOAD_NAME: case OP_LOAD_GLOBAL:
case OP_STORE_LOCAL: case OP_STORE_GLOBAL:
case OP_LOAD_ATTR: case OP_LOAD_METHOD: case OP_STORE_ATTR: case OP_DELETE_ATTR:
case OP_IMPORT_NAME: case OP_BEGIN_CLASS:
case OP_DELETE_LOCAL: case OP_DELETE_GLOBAL:
argStr += " (" + co->names[byte.arg].str() + ")";
break;
case OP_BINARY_OP:
argStr += " (" + BINARY_SPECIAL_METHODS[byte.arg].str() + ")";
break;
case OP_COMPARE_OP:
argStr += " (" + COMPARE_SPECIAL_METHODS[byte.arg].str() + ")";
break;
case OP_BITWISE_OP:
argStr += " (" + BITWISE_SPECIAL_METHODS[byte.arg].str() + ")";
break;
}
ss << pad(argStr, 40); // may overflow
ss << co->blocks[byte.block].type;
if(i != co->codes.size() - 1) ss << '\n';
}
#if !DEBUG_DIS_EXEC_MIN
StrStream consts;
consts << "co_consts: ";
consts << CAST(Str, asRepr(VAR(co->consts)));
StrStream names;
names << "co_names: ";
List list;
for(int i=0; i<co->names.size(); i++){
list.push_back(VAR(co->names[i].str()));
}
names << CAST(Str, asRepr(VAR(list)));
ss << '\n' << consts.str() << '\n' << names.str();
#endif
for(auto& decl: co->func_decls){
ss << "\n\n" << "Disassembly of " << decl->name.str() << ":\n";
ss << disassemble(decl->code);
}
return Str(ss.str());
}
inline void VM::init_builtin_types(){
_all_types.push_back({.obj = heap._new<Type>(Type(1), Type(0)), .base = -1, .name = "object"});
_all_types.push_back({.obj = heap._new<Type>(Type(1), Type(1)), .base = 0, .name = "type"});
tp_object = 0; tp_type = 1;
tp_int = _new_type_object("int");
tp_float = _new_type_object("float");
if(tp_int.index != kTpIntIndex || tp_float.index != kTpFloatIndex) UNREACHABLE();
tp_bool = _new_type_object("bool");
tp_str = _new_type_object("str");
tp_list = _new_type_object("list");
tp_tuple = _new_type_object("tuple");
tp_slice = _new_type_object("slice");
tp_range = _new_type_object("range");
tp_module = _new_type_object("module");
tp_star_wrapper = _new_type_object("_star_wrapper");
tp_function = _new_type_object("function");
tp_native_function = _new_type_object("native_function");
tp_iterator = _new_type_object("iterator");
tp_bound_method = _new_type_object("bound_method");
tp_super = _new_type_object("super");
tp_exception = _new_type_object("Exception");
this->None = heap._new<Dummy>(_new_type_object("NoneType"), {});
this->Ellipsis = heap._new<Dummy>(_new_type_object("ellipsis"), {});
this->True = heap._new<Dummy>(tp_bool, {});
this->False = heap._new<Dummy>(tp_bool, {});
this->_py_null = heap._new<Dummy>(_new_type_object("_py_null"), {});
this->_py_op_call = heap._new<Dummy>(_new_type_object("_py_op_call"), {});
this->_py_op_yield = heap._new<Dummy>(_new_type_object("_py_op_yield"), {});
this->builtins = new_module("builtins");
this->_main = new_module("__main__");
// setup public types
builtins->attr().set("type", _t(tp_type));
builtins->attr().set("object", _t(tp_object));
builtins->attr().set("bool", _t(tp_bool));
builtins->attr().set("int", _t(tp_int));
builtins->attr().set("float", _t(tp_float));
builtins->attr().set("str", _t(tp_str));
builtins->attr().set("list", _t(tp_list));
builtins->attr().set("tuple", _t(tp_tuple));
builtins->attr().set("range", _t(tp_range));
post_init();
for(int i=0; i<_all_types.size(); i++){
_all_types[i].obj->attr()._try_perfect_rehash();
}
for(auto [k, v]: _modules.items()) v->attr()._try_perfect_rehash();
}
// TODO: callable/args here may be garbage collected accidentally
inline PyObject* VM::call(PyObject* callable, Args args, const Args& kwargs, bool opCall){
if(is_type(callable, tp_type)){
PyObject* new_f = callable->attr().try_get(__new__);
PyObject* obj;
if(new_f != nullptr){
obj = call(new_f, std::move(args), kwargs, false);
}else{
obj = heap.gcnew<DummyInstance>(OBJ_GET(Type, callable), {});
PyObject* self;
PyObject* init_f = get_unbound_method(obj, __init__, &self, false);
args.extend_self(self);
if (self != _py_null) call(init_f, std::move(args), kwargs, false);
}
return obj;
}
if(is_type(callable, tp_bound_method)){
auto& bm = CAST(BoundMethod&, callable);
callable = bm.method; // get unbound method
args.extend_self(bm.obj);
}
if(is_type(callable, tp_native_function)){
const auto& f = OBJ_GET(NativeFunc, callable);
if(kwargs.size() != 0) TypeError("native_function does not accept keyword arguments");
return f(this, args);
} else if(is_type(callable, tp_function)){
const Function& fn = CAST(Function&, callable);
NameDict_ locals = make_sp<NameDict>(
fn.decl->code->perfect_locals_capacity,
kLocalsLoadFactor,
fn.decl->code->perfect_hash_seed
);
int i = 0;
for(StrName name : fn.decl->args){
if(i < args.size()){
locals->set(name, args[i++]);
continue;
}
TypeError("missing positional argument " + name.str().escape(true));
}
locals->update(fn.decl->kwargs);
if(!fn.decl->starred_arg.empty()){
List vargs; // handle *args
while(i < args.size()) vargs.push_back(args[i++]);
locals->set(fn.decl->starred_arg, VAR(Tuple(std::move(vargs))));
}else{
for(StrName key : fn.decl->kwargs_order){
if(i < args.size()){
locals->set(key, args[i++]);
}else{
break;
}
}
if(i < args.size()) TypeError("too many arguments");
}
for(int i=0; i<kwargs.size(); i+=2){
const Str& key = CAST(Str&, kwargs[i]);
if(!fn.decl->kwargs.contains(key)){
TypeError(key.escape(true) + " is an invalid keyword argument for " + fn.decl->name.str() + "()");
}
locals->set(key, kwargs[i+1]);
}
PyObject* _module = fn._module != nullptr ? fn._module : top_frame()->_module;
auto _frame = _new_frame(fn.decl->code, _module, locals, fn._closure);
if(fn.decl->code->is_generator) return PyIter(Generator(this, std::move(_frame)));
callstack.push(std::move(_frame));
if(opCall) return _py_op_call;
return _exec();
}
PyObject* self;
PyObject* call_f = get_unbound_method(callable, __call__, &self, false);
if(self != _py_null){
args.extend_self(self);
return call(call_f, std::move(args), kwargs, false);
}
TypeError(OBJ_NAME(_t(callable)).escape(true) + " object is not callable");
return None;
}
inline void VM::unpack_args(Args& args){
List unpacked;
for(int i=0; i<args.size(); i++){
if(is_type(args[i], tp_star_wrapper)){
auto& star = _CAST(StarWrapper&, args[i]);
List& list = CAST(List&, asList(star.obj));
unpacked.extend(list);
}else{
unpacked.push_back(args[i]);
}
}
args = Args(std::move(unpacked));
}
// https://docs.python.org/3/howto/descriptor.html#invocation-from-an-instance
inline PyObject* VM::getattr(PyObject* obj, StrName name, bool throw_err){
// TODO: class_only impl may not be correct
PyObject* objtype = _t(obj);
// handle super() proxy
if(is_type(obj, tp_super)){
const Super& super = OBJ_GET(Super, obj);
obj = super.first;
objtype = _t(super.second);
}
PyObject* cls_var = find_name_in_mro(objtype, name);
if(cls_var != nullptr){
// handle descriptor
PyObject* descr_get = _t(cls_var)->attr().try_get(__get__);
if(descr_get != nullptr) return call(descr_get, Args{cls_var, obj});
}
// handle instance __dict__
if(!is_tagged(obj) && obj->is_attr_valid()){
PyObject* val = obj->attr().try_get(name);
if(val != nullptr) return val;
}
if(cls_var != nullptr){
// bound method is non-data descriptor
if(is_type(cls_var, tp_function) || is_type(cls_var, tp_native_function)){
return VAR(BoundMethod(obj, cls_var));
}
return cls_var;
}
if(throw_err) AttributeError(obj, name);
return nullptr;
}
// used by OP_LOAD_METHOD
// try to load a unbound method (fallback to `getattr` if not found)
inline PyObject* VM::get_unbound_method(PyObject* obj, StrName name, PyObject** self, bool throw_err, bool fallback){
*self = _py_null;
// TODO: class_only impl may not be correct
PyObject* objtype = _t(obj);
// handle super() proxy
if(is_type(obj, tp_super)){
const Super& super = OBJ_GET(Super, obj);
obj = super.first;
objtype = _t(super.second);
}
PyObject* cls_var = find_name_in_mro(objtype, name);
if(fallback){
if(cls_var != nullptr){
// handle descriptor
PyObject* descr_get = _t(cls_var)->attr().try_get(__get__);
if(descr_get != nullptr) return call(descr_get, Args{cls_var, obj});
}
// handle instance __dict__
if(!is_tagged(obj) && obj->is_attr_valid()){
PyObject* val = obj->attr().try_get(name);
if(val != nullptr) return val;
}
}
if(cls_var != nullptr){
if(is_type(cls_var, tp_function) || is_type(cls_var, tp_native_function)){
*self = obj;
}
return cls_var;
}
if(throw_err) AttributeError(obj, name);
return nullptr;
}
template<typename T>
inline void VM::setattr(PyObject* obj, StrName name, T&& value){
static_assert(std::is_same_v<std::decay_t<T>, PyObject*>);
PyObject* objtype = _t(obj);
// handle super() proxy
if(is_type(obj, tp_super)){
Super& super = OBJ_GET(Super, obj);
obj = super.first;
objtype = _t(super.second);
}
PyObject* cls_var = find_name_in_mro(objtype, name);
if(cls_var != nullptr){
// handle descriptor
PyObject* cls_var_t = _t(cls_var);
if(cls_var_t->attr().contains(__get__)){
PyObject* descr_set = cls_var_t->attr().try_get(__set__);
if(descr_set != nullptr){
call(descr_set, Args{cls_var, obj, std::forward<T>(value)});
}else{
TypeError("readonly attribute: " + name.str().escape(true));
}
return;
}
}
// handle instance __dict__
if(is_tagged(obj) || !obj->is_attr_valid()) TypeError("cannot set attribute");
obj->attr().set(name, std::forward<T>(value));
}
template<int ARGC>
void VM::bind_method(PyObject* obj, Str name, NativeFuncRaw fn) {
check_type(obj, tp_type);
obj->attr().set(name, VAR(NativeFunc(fn, ARGC, true)));
}
template<int ARGC>
void VM::bind_func(PyObject* obj, Str name, NativeFuncRaw fn) {
obj->attr().set(name, VAR(NativeFunc(fn, ARGC, false)));
}
inline void VM::_error(Exception e){
if(callstack.empty()){
e.is_re = false;
throw e;
}
top_frame()->push(VAR(e));
_raise();
}
inline PyObject* VM::_exec(){
Frame* frame = top_frame();
const i64 base_id = frame->id;
bool need_raise = false;
while(true){
if(frame->id < base_id) UNREACHABLE();
try{
if(need_raise){ need_raise = false; _raise(); }
PyObject* ret = run_frame(frame);
if(ret == _py_op_yield) return _py_op_yield;
if(ret != _py_op_call){
if(frame->id == base_id){ // [ frameBase<- ]
callstack.pop();
return ret;
}else{
callstack.pop();
frame = callstack.top().get();
frame->push(ret);
}
}else{
frame = callstack.top().get(); // [ frameBase, newFrame<- ]
}
}catch(HandledException& e){
continue;
}catch(UnhandledException& e){
PyObject* obj = frame->popx();
Exception& _e = CAST(Exception&, obj);
_e.st_push(frame->snapshot());
callstack.pop();
if(callstack.empty()){
#if DEBUG_FULL_EXCEPTION
std::cerr << _e.summary() << std::endl;
#endif
throw _e;
}
frame = callstack.top().get();
frame->push(obj);
if(frame->id < base_id) throw ToBeRaisedException();
need_raise = true;
}catch(ToBeRaisedException& e){
need_raise = true;
}
}
}
inline void ManagedHeap::mark() {
for(PyObject* obj: _no_gc) OBJ_MARK(obj);
for(auto& frame : vm->callstack.data()) frame->_gc_mark();
}
inline Str obj_type_name(VM *vm, Type type){
return vm->_all_types[type].name;
}
} // namespace pkpy