pocketpy/3rd/numpy/include/xtensor/xfunction.hpp
Anurag Bhat 86b4fc623c
Merge numpy to pocketpy (#303)
* Merge numpy to pocketpy

* Add CI

* Fix CI
2024-09-02 16:22:41 +08:00

1194 lines
40 KiB
C++

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef XTENSOR_FUNCTION_HPP
#define XTENSOR_FUNCTION_HPP
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <numeric>
#include <tuple>
#include <type_traits>
#include <utility>
#include <xtl/xsequence.hpp>
#include <xtl/xtype_traits.hpp>
#include "xaccessible.hpp"
#include "xexpression_traits.hpp"
#include "xiterable.hpp"
#include "xiterator.hpp"
#include "xlayout.hpp"
#include "xscalar.hpp"
#include "xshape.hpp"
#include "xstrides.hpp"
#include "xtensor_simd.hpp"
#include "xutils.hpp"
namespace xt
{
namespace detail
{
template <bool... B>
using conjunction_c = xtl::conjunction<std::integral_constant<bool, B>...>;
/************************
* xfunction_cache_impl *
************************/
template <class S, class is_shape_trivial>
struct xfunction_cache_impl
{
S shape;
bool is_trivial;
bool is_initialized;
xfunction_cache_impl()
: shape(xtl::make_sequence<S>(0, std::size_t(0)))
, is_trivial(false)
, is_initialized(false)
{
}
};
template <std::size_t... N, class is_shape_trivial>
struct xfunction_cache_impl<fixed_shape<N...>, is_shape_trivial>
{
XTENSOR_CONSTEXPR_ENHANCED_STATIC fixed_shape<N...> shape = fixed_shape<N...>();
XTENSOR_CONSTEXPR_ENHANCED_STATIC bool is_trivial = is_shape_trivial::value;
XTENSOR_CONSTEXPR_ENHANCED_STATIC bool is_initialized = true;
};
#ifdef XTENSOR_HAS_CONSTEXPR_ENHANCED
// Out of line definitions to prevent linker errors prior to C++17
template <std::size_t... N, class is_shape_trivial>
constexpr fixed_shape<N...> xfunction_cache_impl<fixed_shape<N...>, is_shape_trivial>::shape;
template <std::size_t... N, class is_shape_trivial>
constexpr bool xfunction_cache_impl<fixed_shape<N...>, is_shape_trivial>::is_trivial;
template <std::size_t... N, class is_shape_trivial>
constexpr bool xfunction_cache_impl<fixed_shape<N...>, is_shape_trivial>::is_initialized;
#endif
template <class... CT>
struct xfunction_bool_load_type
{
using type = xtl::promote_type_t<typename std::decay_t<CT>::bool_load_type...>;
};
template <class CT>
struct xfunction_bool_load_type<CT>
{
using type = typename std::decay_t<CT>::bool_load_type;
};
template <class... CT>
using xfunction_bool_load_type_t = typename xfunction_bool_load_type<CT...>::type;
}
/************************
* xfunction extensions *
************************/
namespace extension
{
template <class Tag, class F, class... CT>
struct xfunction_base_impl;
template <class F, class... CT>
struct xfunction_base_impl<xtensor_expression_tag, F, CT...>
{
using type = xtensor_empty_base;
};
template <class F, class... CT>
struct xfunction_base : xfunction_base_impl<xexpression_tag_t<CT...>, F, CT...>
{
};
template <class F, class... CT>
using xfunction_base_t = typename xfunction_base<F, CT...>::type;
}
template <class promote>
struct xfunction_cache : detail::xfunction_cache_impl<typename promote::type, promote>
{
};
template <class F, class... CT>
class xfunction_iterator;
template <class F, class... CT>
class xfunction_stepper;
template <class F, class... CT>
class xfunction;
template <class F, class... CT>
struct xiterable_inner_types<xfunction<F, CT...>>
{
using inner_shape_type = promote_shape_t<typename std::decay_t<CT>::shape_type...>;
using const_stepper = xfunction_stepper<F, CT...>;
using stepper = const_stepper;
};
template <class F, class... CT>
struct xcontainer_inner_types<xfunction<F, CT...>>
{
// Added indirection for MSVC 2017 bug with the operator value_type()
using func_return_type = typename meta_identity<
decltype(std::declval<F>()(std::declval<xvalue_type_t<std::decay_t<CT>>>()...))>::type;
using value_type = std::decay_t<func_return_type>;
using reference = func_return_type;
using const_reference = reference;
using size_type = common_size_type_t<std::decay_t<CT>...>;
};
template <class T, class F, class... CT>
struct has_simd_interface<xfunction<F, CT...>, T> : xtl::conjunction<
has_simd_type<T>,
has_simd_apply<F, xt_simd::simd_type<T>>,
has_simd_interface<std::decay_t<CT>, T>...>
{
};
/*************************************
* overlapping_memory_checker_traits *
*************************************/
template <class E>
struct overlapping_memory_checker_traits<
E,
std::enable_if_t<!has_memory_address<E>::value && is_specialization_of<xfunction, E>::value>>
{
template <std::size_t I = 0, class... T, std::enable_if_t<(I == sizeof...(T)), int> = 0>
static bool check_tuple(const std::tuple<T...>&, const memory_range&)
{
return false;
}
template <std::size_t I = 0, class... T, std::enable_if_t<(I < sizeof...(T)), int> = 0>
static bool check_tuple(const std::tuple<T...>& t, const memory_range& dst_range)
{
using ChildE = std::decay_t<decltype(std::get<I>(t))>;
return overlapping_memory_checker_traits<ChildE>::check_overlap(std::get<I>(t), dst_range)
|| check_tuple<I + 1>(t, dst_range);
}
static bool check_overlap(const E& expr, const memory_range& dst_range)
{
if (expr.size() == 0)
{
return false;
}
else
{
return check_tuple(expr.arguments(), dst_range);
}
}
};
/*************
* xfunction *
*************/
/**
* @class xfunction
* @brief Multidimensional function operating on
* xtensor expressions.
*
* The xfunction class implements a multidimensional function
* operating on xtensor expressions.
*
* @tparam F the function type
* @tparam CT the closure types for arguments of the function
*/
template <class F, class... CT>
class xfunction : private xconst_iterable<xfunction<F, CT...>>,
public xsharable_expression<xfunction<F, CT...>>,
private xconst_accessible<xfunction<F, CT...>>,
public extension::xfunction_base_t<F, CT...>
{
public:
using self_type = xfunction<F, CT...>;
using accessible_base = xconst_accessible<self_type>;
using extension_base = extension::xfunction_base_t<F, CT...>;
using expression_tag = typename extension_base::expression_tag;
using only_scalar = all_xscalar<CT...>;
using functor_type = typename std::remove_reference<F>::type;
using tuple_type = std::tuple<CT...>;
using inner_types = xcontainer_inner_types<self_type>;
using value_type = typename inner_types::value_type;
using reference = typename inner_types::reference;
using const_reference = typename inner_types::const_reference;
using pointer = value_type*;
using const_pointer = const value_type*;
using size_type = typename inner_types::size_type;
using difference_type = common_difference_type_t<std::decay_t<CT>...>;
using simd_value_type = xt_simd::simd_type<value_type>;
// xtl::promote_type_t<typename std::decay_t<CT>::bool_load_type...>;
using bool_load_type = detail::xfunction_bool_load_type_t<CT...>;
template <class requested_type>
using simd_return_type = xt_simd::simd_return_type<value_type, requested_type>;
using iterable_base = xconst_iterable<xfunction<F, CT...>>;
using inner_shape_type = typename iterable_base::inner_shape_type;
using shape_type = inner_shape_type;
using stepper = typename iterable_base::stepper;
using const_stepper = typename iterable_base::const_stepper;
static constexpr layout_type static_layout = compute_layout(std::decay_t<CT>::static_layout...);
static constexpr bool contiguous_layout = static_layout != layout_type::dynamic;
template <layout_type L>
using layout_iterator = typename iterable_base::template layout_iterator<L>;
template <layout_type L>
using const_layout_iterator = typename iterable_base::template const_layout_iterator<L>;
template <layout_type L>
using reverse_layout_iterator = typename iterable_base::template reverse_layout_iterator<L>;
template <layout_type L>
using const_reverse_layout_iterator = typename iterable_base::template const_reverse_layout_iterator<L>;
template <class S, layout_type L>
using broadcast_iterator = typename iterable_base::template broadcast_iterator<S, L>;
template <class S, layout_type L>
using const_broadcast_iterator = typename iterable_base::template const_broadcast_iterator<S, L>;
template <class S, layout_type L>
using reverse_broadcast_iterator = typename iterable_base::template reverse_broadcast_iterator<S, L>;
template <class S, layout_type L>
using const_reverse_broadcast_iterator = typename iterable_base::template const_reverse_broadcast_iterator<S, L>;
using const_linear_iterator = xfunction_iterator<F, CT...>;
using linear_iterator = const_linear_iterator;
using const_reverse_linear_iterator = std::reverse_iterator<const_linear_iterator>;
using reverse_linear_iterator = std::reverse_iterator<linear_iterator>;
using iterator = typename iterable_base::iterator;
using const_iterator = typename iterable_base::const_iterator;
using reverse_iterator = typename iterable_base::reverse_iterator;
using const_reverse_iterator = typename iterable_base::const_reverse_iterator;
template <class Func, class... CTA, class U = std::enable_if_t<!std::is_base_of<std::decay_t<Func>, self_type>::value>>
xfunction(Func&& f, CTA&&... e) noexcept;
template <class FA, class... CTA>
xfunction(xfunction<FA, CTA...> xf) noexcept;
~xfunction() = default;
xfunction(const xfunction&) = default;
xfunction& operator=(const xfunction&) = default;
xfunction(xfunction&&) = default;
xfunction& operator=(xfunction&&) = default;
using accessible_base::size;
size_type dimension() const noexcept;
const inner_shape_type& shape() const;
layout_type layout() const noexcept;
bool is_contiguous() const noexcept;
using accessible_base::shape;
template <class... Args>
const_reference operator()(Args... args) const;
template <class... Args>
const_reference unchecked(Args... args) const;
using accessible_base::at;
using accessible_base::operator[];
using accessible_base::back;
using accessible_base::front;
using accessible_base::in_bounds;
using accessible_base::periodic;
template <class It>
const_reference element(It first, It last) const;
template <class S>
bool broadcast_shape(S& shape, bool reuse_cache = false) const;
template <class S>
bool has_linear_assign(const S& strides) const noexcept;
using iterable_base::begin;
using iterable_base::cbegin;
using iterable_base::cend;
using iterable_base::crbegin;
using iterable_base::crend;
using iterable_base::end;
using iterable_base::rbegin;
using iterable_base::rend;
const_linear_iterator linear_begin() const noexcept;
const_linear_iterator linear_end() const noexcept;
const_linear_iterator linear_cbegin() const noexcept;
const_linear_iterator linear_cend() const noexcept;
const_reverse_linear_iterator linear_rbegin() const noexcept;
const_reverse_linear_iterator linear_rend() const noexcept;
const_reverse_linear_iterator linear_crbegin() const noexcept;
const_reverse_linear_iterator linear_crend() const noexcept;
template <class S>
const_stepper stepper_begin(const S& shape) const noexcept;
template <class S>
const_stepper stepper_end(const S& shape, layout_type l) const noexcept;
const_reference data_element(size_type i) const;
const_reference flat(size_type i) const;
template <class UT = self_type, class = typename std::enable_if<UT::only_scalar::value>::type>
operator value_type() const;
template <class align, class requested_type = value_type, std::size_t N = xt_simd::simd_traits<requested_type>::size>
simd_return_type<requested_type> load_simd(size_type i) const;
const tuple_type& arguments() const noexcept;
const functor_type& functor() const noexcept;
private:
template <std::size_t... I>
layout_type layout_impl(std::index_sequence<I...>) const noexcept;
template <std::size_t... I, class... Args>
const_reference access_impl(std::index_sequence<I...>, Args... args) const;
template <std::size_t... I, class... Args>
const_reference unchecked_impl(std::index_sequence<I...>, Args... args) const;
template <std::size_t... I, class It>
const_reference element_access_impl(std::index_sequence<I...>, It first, It last) const;
template <std::size_t... I>
const_reference data_element_impl(std::index_sequence<I...>, size_type i) const;
template <class align, class requested_type, std::size_t N, std::size_t... I>
auto load_simd_impl(std::index_sequence<I...>, size_type i) const;
template <class Func, std::size_t... I>
const_stepper build_stepper(Func&& f, std::index_sequence<I...>) const noexcept;
template <class Func, std::size_t... I>
auto build_iterator(Func&& f, std::index_sequence<I...>) const noexcept;
size_type compute_dimension() const noexcept;
void compute_cached_shape() const;
tuple_type m_e;
functor_type m_f;
mutable xfunction_cache<detail::promote_index<typename std::decay_t<CT>::shape_type...>> m_cache;
friend class xfunction_iterator<F, CT...>;
friend class xfunction_stepper<F, CT...>;
friend class xconst_iterable<self_type>;
friend class xconst_accessible<self_type>;
};
/**********************
* xfunction_iterator *
**********************/
template <class F, class... CT>
class xfunction_iterator : public xtl::xrandom_access_iterator_base<
xfunction_iterator<F, CT...>,
typename xfunction<F, CT...>::value_type,
typename xfunction<F, CT...>::difference_type,
typename xfunction<F, CT...>::pointer,
typename xfunction<F, CT...>::reference>
{
public:
using self_type = xfunction_iterator<F, CT...>;
using functor_type = typename std::remove_reference<F>::type;
using xfunction_type = xfunction<F, CT...>;
using value_type = typename xfunction_type::value_type;
using reference = typename xfunction_type::value_type;
using pointer = typename xfunction_type::const_pointer;
using difference_type = typename xfunction_type::difference_type;
using iterator_category = std::random_access_iterator_tag;
template <class... It>
xfunction_iterator(const xfunction_type* func, It&&... it) noexcept;
self_type& operator++();
self_type& operator--();
self_type& operator+=(difference_type n);
self_type& operator-=(difference_type n);
difference_type operator-(const self_type& rhs) const;
reference operator*() const;
bool equal(const self_type& rhs) const;
bool less_than(const self_type& rhs) const;
private:
using data_type = std::tuple<decltype(xt::linear_begin(std::declval<const std::decay_t<CT>>()))...>;
template <std::size_t... I>
reference deref_impl(std::index_sequence<I...>) const;
template <std::size_t... I>
difference_type
tuple_max_diff(std::index_sequence<I...>, const data_type& lhs, const data_type& rhs) const;
const xfunction_type* p_f;
data_type m_it;
};
template <class F, class... CT>
bool operator==(const xfunction_iterator<F, CT...>& it1, const xfunction_iterator<F, CT...>& it2);
template <class F, class... CT>
bool operator<(const xfunction_iterator<F, CT...>& it1, const xfunction_iterator<F, CT...>& it2);
/*********************
* xfunction_stepper *
*********************/
template <class F, class... CT>
class xfunction_stepper
{
public:
using self_type = xfunction_stepper<F, CT...>;
using functor_type = typename std::remove_reference<F>::type;
using xfunction_type = xfunction<F, CT...>;
using value_type = typename xfunction_type::value_type;
using reference = typename xfunction_type::reference;
using pointer = typename xfunction_type::const_pointer;
using size_type = typename xfunction_type::size_type;
using difference_type = typename xfunction_type::difference_type;
using shape_type = typename xfunction_type::shape_type;
template <class requested_type>
using simd_return_type = xt_simd::simd_return_type<value_type, requested_type>;
template <class... St>
xfunction_stepper(const xfunction_type* func, St&&... st) noexcept;
void step(size_type dim);
void step_back(size_type dim);
void step(size_type dim, size_type n);
void step_back(size_type dim, size_type n);
void reset(size_type dim);
void reset_back(size_type dim);
void to_begin();
void to_end(layout_type l);
reference operator*() const;
template <class T>
simd_return_type<T> step_simd();
void step_leading();
private:
template <std::size_t... I>
reference deref_impl(std::index_sequence<I...>) const;
template <class T, std::size_t... I>
simd_return_type<T> step_simd_impl(std::index_sequence<I...>);
const xfunction_type* p_f;
std::tuple<typename std::decay_t<CT>::const_stepper...> m_st;
};
/*********************************
* xfunction implementation *
*********************************/
/**
* @name Constructor
*/
//@{
/**
* Constructs an xfunction applying the specified function to the given
* arguments.
* @param f the function to apply
* @param e the \ref xexpression arguments
*/
template <class F, class... CT>
template <class Func, class... CTA, class U>
inline xfunction<F, CT...>::xfunction(Func&& f, CTA&&... e) noexcept
: m_e(std::forward<CTA>(e)...)
, m_f(std::forward<Func>(f))
{
}
/**
* Constructs an xfunction applying the specified function given by another
* xfunction with its arguments.
* @param xf the xfunction to apply
*/
template <class F, class... CT>
template <class FA, class... CTA>
inline xfunction<F, CT...>::xfunction(xfunction<FA, CTA...> xf) noexcept
: m_e(xf.arguments())
, m_f(xf.functor())
{
}
//@}
/**
* @name Size and shape
*/
//@{
/**
* Returns the number of dimensions of the function.
*/
template <class F, class... CT>
inline auto xfunction<F, CT...>::dimension() const noexcept -> size_type
{
size_type dimension = m_cache.is_initialized ? m_cache.shape.size() : compute_dimension();
return dimension;
}
template <class F, class... CT>
inline void xfunction<F, CT...>::compute_cached_shape() const
{
static_assert(!detail::is_fixed<shape_type>::value, "Calling compute_cached_shape on fixed!");
m_cache.shape = uninitialized_shape<xindex_type_t<inner_shape_type>>(compute_dimension());
m_cache.is_trivial = broadcast_shape(m_cache.shape, false);
m_cache.is_initialized = true;
}
/**
* Returns the shape of the xfunction.
*/
template <class F, class... CT>
inline auto xfunction<F, CT...>::shape() const -> const inner_shape_type&
{
xtl::mpl::static_if<!detail::is_fixed<inner_shape_type>::value>(
[&](auto self)
{
if (!m_cache.is_initialized)
{
self(this)->compute_cached_shape();
}
},
[](auto /*self*/) {}
);
return m_cache.shape;
}
/**
* Returns the layout_type of the xfunction.
*/
template <class F, class... CT>
inline layout_type xfunction<F, CT...>::layout() const noexcept
{
return layout_impl(std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
inline bool xfunction<F, CT...>::is_contiguous() const noexcept
{
return layout() != layout_type::dynamic
&& accumulate(
[](bool r, const auto& exp)
{
return r && exp.is_contiguous();
},
true,
m_e
);
}
//@}
/**
* @name Data
*/
/**
* Returns a constant reference to the element at the specified position in the function.
* @param args a list of indices specifying the position in the function. Indices
* must be unsigned integers, the number of indices should be equal or greater than
* the number of dimensions of the function.
*/
template <class F, class... CT>
template <class... Args>
inline auto xfunction<F, CT...>::operator()(Args... args) const -> const_reference
{
// The static cast prevents the compiler from instantiating the template methods with signed integers,
// leading to warning about signed/unsigned conversions in the deeper layers of the access methods
return access_impl(std::make_index_sequence<sizeof...(CT)>(), static_cast<size_type>(args)...);
}
/**
* @name Data
*/
/**
* Returns a constant reference to the element at the specified position of the underlying
* contiguous storage of the function.
* @param index index to underlying flat storage.
*/
template <class F, class... CT>
inline auto xfunction<F, CT...>::flat(size_type index) const -> const_reference
{
return data_element_impl(std::make_index_sequence<sizeof...(CT)>(), index);
}
/**
* Returns a constant reference to the element at the specified position in the expression.
* @param args a list of indices specifying the position in the expression. Indices
* must be unsigned integers, the number of indices must be equal to the number of
* dimensions of the expression, else the behavior is undefined.
*
* @warning This method is meant for performance, for expressions with a dynamic
* number of dimensions (i.e. not known at compile time). Since it may have
* undefined behavior (see parameters), operator() should be preferred whenever
* it is possible.
* @warning This method is NOT compatible with broadcasting, meaning the following
* code has undefined behavior:
* @code{.cpp}
* xt::xarray<double> a = {{0, 1}, {2, 3}};
* xt::xarray<double> b = {0, 1};
* auto fd = a + b;
* double res = fd.unchecked(0, 1);
* @endcode
*/
template <class F, class... CT>
template <class... Args>
inline auto xfunction<F, CT...>::unchecked(Args... args) const -> const_reference
{
// The static cast prevents the compiler from instantiating the template methods with signed integers,
// leading to warning about signed/unsigned conversions in the deeper layers of the access methods
return unchecked_impl(std::make_index_sequence<sizeof...(CT)>(), static_cast<size_type>(args)...);
}
/**
* Returns a constant reference to the element at the specified position in the function.
* @param first iterator starting the sequence of indices
* @param last iterator ending the sequence of indices
* The number of indices in the sequence should be equal to or greater
* than the number of dimensions of the container.
*/
template <class F, class... CT>
template <class It>
inline auto xfunction<F, CT...>::element(It first, It last) const -> const_reference
{
return element_access_impl(std::make_index_sequence<sizeof...(CT)>(), first, last);
}
//@}
/**
* @name Broadcasting
*/
//@{
/**
* Broadcast the shape of the function to the specified parameter.
* @param shape the result shape
* @param reuse_cache boolean for reusing a previously computed shape
* @return a boolean indicating whether the broadcasting is trivial
*/
template <class F, class... CT>
template <class S>
inline bool xfunction<F, CT...>::broadcast_shape(S& shape, bool reuse_cache) const
{
if (m_cache.is_initialized && reuse_cache)
{
std::copy(m_cache.shape.cbegin(), m_cache.shape.cend(), shape.begin());
return m_cache.is_trivial;
}
else
{
// e.broadcast_shape must be evaluated even if b is false
auto func = [&shape](bool b, auto&& e)
{
return e.broadcast_shape(shape) && b;
};
return accumulate(func, true, m_e);
}
}
/**
* Checks whether the xfunction can be linearly assigned to an expression
* with the specified strides.
* @return a boolean indicating whether a linear assign is possible
*/
template <class F, class... CT>
template <class S>
inline bool xfunction<F, CT...>::has_linear_assign(const S& strides) const noexcept
{
auto func = [&strides](bool b, auto&& e)
{
return b && e.has_linear_assign(strides);
};
return accumulate(func, true, m_e);
}
//@}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_begin() const noexcept -> const_linear_iterator
{
return linear_cbegin();
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_end() const noexcept -> const_linear_iterator
{
return linear_cend();
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_cbegin() const noexcept -> const_linear_iterator
{
auto f = [](const auto& e) noexcept
{
return xt::linear_begin(e);
};
return build_iterator(f, std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_cend() const noexcept -> const_linear_iterator
{
auto f = [](const auto& e) noexcept
{
return xt::linear_end(e);
};
return build_iterator(f, std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_rbegin() const noexcept -> const_reverse_linear_iterator
{
return linear_crbegin();
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_rend() const noexcept -> const_reverse_linear_iterator
{
return linear_crend();
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_crbegin() const noexcept -> const_reverse_linear_iterator
{
return const_reverse_linear_iterator(linear_cend());
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::linear_crend() const noexcept -> const_reverse_linear_iterator
{
return const_reverse_linear_iterator(linear_cbegin());
}
template <class F, class... CT>
template <class S>
inline auto xfunction<F, CT...>::stepper_begin(const S& shape) const noexcept -> const_stepper
{
auto f = [&shape](const auto& e) noexcept
{
return e.stepper_begin(shape);
};
return build_stepper(f, std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
template <class S>
inline auto xfunction<F, CT...>::stepper_end(const S& shape, layout_type l) const noexcept -> const_stepper
{
auto f = [&shape, l](const auto& e) noexcept
{
return e.stepper_end(shape, l);
};
return build_stepper(f, std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::data_element(size_type i) const -> const_reference
{
return data_element_impl(std::make_index_sequence<sizeof...(CT)>(), i);
}
template <class F, class... CT>
template <class UT, class>
inline xfunction<F, CT...>::operator value_type() const
{
return operator()();
}
template <class F, class... CT>
template <class align, class requested_type, std::size_t N>
inline auto xfunction<F, CT...>::load_simd(size_type i) const -> simd_return_type<requested_type>
{
return load_simd_impl<align, requested_type, N>(std::make_index_sequence<sizeof...(CT)>(), i);
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::arguments() const noexcept -> const tuple_type&
{
return m_e;
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::functor() const noexcept -> const functor_type&
{
return m_f;
}
template <class F, class... CT>
template <std::size_t... I>
inline layout_type xfunction<F, CT...>::layout_impl(std::index_sequence<I...>) const noexcept
{
return compute_layout(std::get<I>(m_e).layout()...);
}
template <class F, class... CT>
template <std::size_t... I, class... Args>
inline auto xfunction<F, CT...>::access_impl(std::index_sequence<I...>, Args... args) const
-> const_reference
{
XTENSOR_TRY(check_index(shape(), args...));
XTENSOR_CHECK_DIMENSION(shape(), args...);
return m_f(std::get<I>(m_e)(args...)...);
}
template <class F, class... CT>
template <std::size_t... I, class... Args>
inline auto xfunction<F, CT...>::unchecked_impl(std::index_sequence<I...>, Args... args) const
-> const_reference
{
return m_f(std::get<I>(m_e).unchecked(args...)...);
}
template <class F, class... CT>
template <std::size_t... I, class It>
inline auto xfunction<F, CT...>::element_access_impl(std::index_sequence<I...>, It first, It last) const
-> const_reference
{
XTENSOR_TRY(check_element_index(shape(), first, last));
return m_f((std::get<I>(m_e).element(first, last))...);
}
template <class F, class... CT>
template <std::size_t... I>
inline auto xfunction<F, CT...>::data_element_impl(std::index_sequence<I...>, size_type i) const
-> const_reference
{
return m_f((std::get<I>(m_e).data_element(i))...);
}
template <class F, class... CT>
template <class align, class requested_type, std::size_t N, std::size_t... I>
inline auto xfunction<F, CT...>::load_simd_impl(std::index_sequence<I...>, size_type i) const
{
return m_f.simd_apply((std::get<I>(m_e).template load_simd<align, requested_type>(i))...);
}
template <class F, class... CT>
template <class Func, std::size_t... I>
inline auto xfunction<F, CT...>::build_stepper(Func&& f, std::index_sequence<I...>) const noexcept
-> const_stepper
{
return const_stepper(this, f(std::get<I>(m_e))...);
}
template <class F, class... CT>
template <class Func, std::size_t... I>
inline auto xfunction<F, CT...>::build_iterator(Func&& f, std::index_sequence<I...>) const noexcept
{
return const_linear_iterator(this, f(std::get<I>(m_e))...);
}
template <class F, class... CT>
inline auto xfunction<F, CT...>::compute_dimension() const noexcept -> size_type
{
auto func = [](size_type d, auto&& e) noexcept
{
return (std::max)(d, e.dimension());
};
return accumulate(func, size_type(0), m_e);
}
/*************************************
* xfunction_iterator implementation *
*************************************/
template <class F, class... CT>
template <class... It>
inline xfunction_iterator<F, CT...>::xfunction_iterator(const xfunction_type* func, It&&... it) noexcept
: p_f(func)
, m_it(std::forward<It>(it)...)
{
}
template <class F, class... CT>
inline auto xfunction_iterator<F, CT...>::operator++() -> self_type&
{
auto f = [](auto& it)
{
++it;
};
for_each(f, m_it);
return *this;
}
template <class F, class... CT>
inline auto xfunction_iterator<F, CT...>::operator--() -> self_type&
{
auto f = [](auto& it)
{
return --it;
};
for_each(f, m_it);
return *this;
}
template <class F, class... CT>
inline auto xfunction_iterator<F, CT...>::operator+=(difference_type n) -> self_type&
{
auto f = [n](auto& it)
{
it += n;
};
for_each(f, m_it);
return *this;
}
template <class F, class... CT>
inline auto xfunction_iterator<F, CT...>::operator-=(difference_type n) -> self_type&
{
auto f = [n](auto& it)
{
it -= n;
};
for_each(f, m_it);
return *this;
}
template <class F, class... CT>
inline auto xfunction_iterator<F, CT...>::operator-(const self_type& rhs) const -> difference_type
{
return tuple_max_diff(std::make_index_sequence<sizeof...(CT)>(), m_it, rhs.m_it);
}
template <class F, class... CT>
inline auto xfunction_iterator<F, CT...>::operator*() const -> reference
{
return deref_impl(std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
inline bool xfunction_iterator<F, CT...>::equal(const self_type& rhs) const
{
// Optimization: no need to compare each subiterator since they all
// are incremented decremented together.
constexpr std::size_t temp = xtl::mpl::find_if<is_not_xdummy_iterator, data_type>::value;
constexpr std::size_t index = (temp == std::tuple_size<data_type>::value) ? 0 : temp;
return std::get<index>(m_it) == std::get<index>(rhs.m_it);
}
template <class F, class... CT>
inline bool xfunction_iterator<F, CT...>::less_than(const self_type& rhs) const
{
// Optimization: no need to compare each subiterator since they all
// are incremented decremented together.
constexpr std::size_t temp = xtl::mpl::find_if<is_not_xdummy_iterator, data_type>::value;
constexpr std::size_t index = (temp == std::tuple_size<data_type>::value) ? 0 : temp;
return std::get<index>(m_it) < std::get<index>(rhs.m_it);
}
template <class F, class... CT>
template <std::size_t... I>
inline auto xfunction_iterator<F, CT...>::deref_impl(std::index_sequence<I...>) const -> reference
{
return (p_f->m_f)(*std::get<I>(m_it)...);
}
template <class F, class... CT>
template <std::size_t... I>
inline auto xfunction_iterator<F, CT...>::tuple_max_diff(
std::index_sequence<I...>,
const data_type& lhs,
const data_type& rhs
) const -> difference_type
{
auto diff = std::make_tuple((std::get<I>(lhs) - std::get<I>(rhs))...);
auto func = [](difference_type n, auto&& v)
{
return (std::max)(n, v);
};
return accumulate(func, difference_type(0), diff);
}
template <class F, class... CT>
inline bool operator==(const xfunction_iterator<F, CT...>& it1, const xfunction_iterator<F, CT...>& it2)
{
return it1.equal(it2);
}
template <class F, class... CT>
inline bool operator<(const xfunction_iterator<F, CT...>& it1, const xfunction_iterator<F, CT...>& it2)
{
return it1.less_than(it2);
}
/************************************
* xfunction_stepper implementation *
************************************/
template <class F, class... CT>
template <class... St>
inline xfunction_stepper<F, CT...>::xfunction_stepper(const xfunction_type* func, St&&... st) noexcept
: p_f(func)
, m_st(std::forward<St>(st)...)
{
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::step(size_type dim)
{
auto f = [dim](auto& st)
{
st.step(dim);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::step_back(size_type dim)
{
auto f = [dim](auto& st)
{
st.step_back(dim);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::step(size_type dim, size_type n)
{
auto f = [dim, n](auto& st)
{
st.step(dim, n);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::step_back(size_type dim, size_type n)
{
auto f = [dim, n](auto& st)
{
st.step_back(dim, n);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::reset(size_type dim)
{
auto f = [dim](auto& st)
{
st.reset(dim);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::reset_back(size_type dim)
{
auto f = [dim](auto& st)
{
st.reset_back(dim);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::to_begin()
{
auto f = [](auto& st)
{
st.to_begin();
};
for_each(f, m_st);
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::to_end(layout_type l)
{
auto f = [l](auto& st)
{
st.to_end(l);
};
for_each(f, m_st);
}
template <class F, class... CT>
inline auto xfunction_stepper<F, CT...>::operator*() const -> reference
{
return deref_impl(std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
template <std::size_t... I>
inline auto xfunction_stepper<F, CT...>::deref_impl(std::index_sequence<I...>) const -> reference
{
return (p_f->m_f)(*std::get<I>(m_st)...);
}
template <class F, class... CT>
template <class T, std::size_t... I>
inline auto xfunction_stepper<F, CT...>::step_simd_impl(std::index_sequence<I...>) -> simd_return_type<T>
{
return (p_f->m_f.simd_apply)(std::get<I>(m_st).template step_simd<T>()...);
}
template <class F, class... CT>
template <class T>
inline auto xfunction_stepper<F, CT...>::step_simd() -> simd_return_type<T>
{
return step_simd_impl<T>(std::make_index_sequence<sizeof...(CT)>());
}
template <class F, class... CT>
inline void xfunction_stepper<F, CT...>::step_leading()
{
auto step_leading_lambda = [](auto&& st)
{
st.step_leading();
};
for_each(step_leading_lambda, m_st);
}
}
#endif