pocketpy/3rd/numpy/include/xtensor/xhistogram.hpp
Anurag Bhat 86b4fc623c
Merge numpy to pocketpy (#303)
* Merge numpy to pocketpy

* Add CI

* Fix CI
2024-09-02 16:22:41 +08:00

615 lines
21 KiB
C++

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
/**
* @brief construct histogram
*/
#ifndef XTENSOR_HISTOGRAM_HPP
#define XTENSOR_HISTOGRAM_HPP
#include "xset_operation.hpp"
#include "xsort.hpp"
#include "xtensor.hpp"
#include "xview.hpp"
using namespace xt::placeholders;
namespace xt
{
/**
* @ingroup digitize
* @brief Return the indices of the bins to which each value in input array belongs.
*
* @param data The data.
* @param bin_edges The bin-edges. It has to be 1-dimensional and monotonic.
* @param right Indicating whether the intervals include the right or the left bin edge.
* @return Output array of indices, of same shape as x.
*/
template <class E1, class E2>
inline auto digitize(E1&& data, E2&& bin_edges, bool right = false)
{
XTENSOR_ASSERT(bin_edges.dimension() == 1);
XTENSOR_ASSERT(bin_edges.size() >= 2);
XTENSOR_ASSERT(std::is_sorted(bin_edges.cbegin(), bin_edges.cend()));
XTENSOR_ASSERT(xt::amin(data)[0] >= bin_edges[0]);
XTENSOR_ASSERT(xt::amax(data)[0] <= bin_edges[bin_edges.size() - 1]);
return xt::searchsorted(std::forward<E2>(bin_edges), std::forward<E1>(data), right);
}
namespace detail
{
template <class R = double, class E1, class E2, class E3>
inline auto histogram_imp(E1&& data, E2&& bin_edges, E3&& weights, bool density, bool equal_bins)
{
using size_type = common_size_type_t<std::decay_t<E1>, std::decay_t<E2>, std::decay_t<E3>>;
using value_type = typename std::decay_t<E3>::value_type;
XTENSOR_ASSERT(data.dimension() == 1);
XTENSOR_ASSERT(weights.dimension() == 1);
XTENSOR_ASSERT(bin_edges.dimension() == 1);
XTENSOR_ASSERT(weights.size() == data.size());
XTENSOR_ASSERT(bin_edges.size() >= 2);
XTENSOR_ASSERT(std::is_sorted(bin_edges.cbegin(), bin_edges.cend()));
size_t n_bins = bin_edges.size() - 1;
xt::xtensor<value_type, 1> count = xt::zeros<value_type>({n_bins});
if (equal_bins)
{
std::array<typename std::decay_t<E2>::value_type, 2> bounds = xt::minmax(bin_edges)();
auto left = static_cast<double>(bounds[0]);
auto right = static_cast<double>(bounds[1]);
double norm = 1. / (right - left);
for (size_t i = 0; i < data.size(); ++i)
{
auto v = static_cast<double>(data(i));
// left and right are not bounds of data
if (v >= left && v < right)
{
auto i_bin = static_cast<size_t>(static_cast<double>(n_bins) * (v - left) * norm);
count(i_bin) += weights(i);
}
else if (v == right)
{
count(n_bins - 1) += weights(i);
}
}
}
else
{
auto sorter = xt::argsort(data);
size_type ibin = 0;
for (auto& idx : sorter)
{
auto item = data[idx];
if (item < bin_edges[0])
{
continue;
}
if (item > bin_edges[n_bins])
{
break;
}
while (item >= bin_edges[ibin + 1] && ibin < n_bins - 1)
{
++ibin;
}
count[ibin] += weights[idx];
}
}
xt::xtensor<R, 1> prob = xt::cast<R>(count);
if (density)
{
R n = static_cast<R>(data.size());
for (size_type i = 0; i < bin_edges.size() - 1; ++i)
{
prob[i] /= (static_cast<R>(bin_edges[i + 1] - bin_edges[i]) * n);
}
}
return prob;
}
} // detail
/**
* @ingroup histogram
* @brief Compute the histogram of a set of data.
*
* @param data The data.
* @param bin_edges The bin-edges. It has to be 1-dimensional and monotonic.
* @param weights Weight factors corresponding to each data-point.
* @param density If true the resulting integral is normalized to 1. [default: false]
* @return An one-dimensional xarray<double>, length: bin_edges.size()-1.
*/
template <class R = double, class E1, class E2, class E3>
inline auto histogram(E1&& data, E2&& bin_edges, E3&& weights, bool density = false)
{
return detail::histogram_imp<R>(
std::forward<E1>(data),
std::forward<E2>(bin_edges),
std::forward<E3>(weights),
density,
false
);
}
/**
* @ingroup histogram
* @brief Compute the histogram of a set of data.
*
* @param data The data.
* @param bin_edges The bin-edges.
* @param density If true the resulting integral is normalized to 1. [default: false]
* @return An one-dimensional xarray<double>, length: bin_edges.size()-1.
*/
template <class R = double, class E1, class E2>
inline auto histogram(E1&& data, E2&& bin_edges, bool density = false)
{
using value_type = typename std::decay_t<E1>::value_type;
auto n = data.size();
return detail::histogram_imp<R>(
std::forward<E1>(data),
std::forward<E2>(bin_edges),
xt::ones<value_type>({n}),
density,
false
);
}
/**
* @ingroup histogram
* @brief Compute the histogram of a set of data.
*
* @param data The data.
* @param bins The number of bins. [default: 10]
* @param density If true the resulting integral is normalized to 1. [default: false]
* @return An one-dimensional xarray<double>, length: bin_edges.size()-1.
*/
template <class R = double, class E1>
inline auto histogram(E1&& data, std::size_t bins = 10, bool density = false)
{
using value_type = typename std::decay_t<E1>::value_type;
auto n = data.size();
return detail::histogram_imp<R>(
std::forward<E1>(data),
histogram_bin_edges(data, xt::ones<value_type>({n}), bins),
xt::ones<value_type>({n}),
density,
true
);
}
/**
* @ingroup histogram
* @brief Compute the histogram of a set of data.
*
* @param data The data.
* @param bins The number of bins.
* @param left The lower-most edge.
* @param right The upper-most edge.
* @param density If true the resulting integral is normalized to 1. [default: false]
* @return An one-dimensional xarray<double>, length: bin_edges.size()-1.
*/
template <class R = double, class E1, class E2>
inline auto histogram(E1&& data, std::size_t bins, E2 left, E2 right, bool density = false)
{
using value_type = typename std::decay_t<E1>::value_type;
auto n = data.size();
return detail::histogram_imp<R>(
std::forward<E1>(data),
histogram_bin_edges(data, left, right, bins),
xt::ones<value_type>({n}),
density,
true
);
}
/**
* @ingroup histogram
* @brief Compute the histogram of a set of data.
*
* @param data The data.
* @param bins The number of bins.
* @param weights Weight factors corresponding to each data-point.
* @param density If true the resulting integral is normalized to 1. [default: false]
* @return An one-dimensional xarray<double>, length: bin_edges.size()-1.
*/
template <class R = double, class E1, class E2>
inline auto histogram(E1&& data, std::size_t bins, E2&& weights, bool density = false)
{
return detail::histogram_imp<R>(
std::forward<E1>(data),
histogram_bin_edges(data, weights, bins),
std::forward<E2>(weights),
density,
true
);
}
/**
* @ingroup histogram
* @brief Compute the histogram of a set of data.
*
* @param data The data.
* @param bins The number of bins.
* @param left The lower-most edge.
* @param right The upper-most edge.
* @param weights Weight factors corresponding to each data-point.
* @param density If true the resulting integral is normalized to 1. [default: false]
* @return An one-dimensional xarray<double>, length: bin_edges.size()-1.
*/
template <class R = double, class E1, class E2, class E3>
inline auto histogram(E1&& data, std::size_t bins, E2&& weights, E3 left, E3 right, bool density = false)
{
return detail::histogram_imp<R>(
std::forward<E1>(data),
histogram_bin_edges(data, weights, left, right, bins),
std::forward<E2>(weights),
density,
true
);
}
/**
* @ingroup histogram
* @brief Defines different algorithms to be used in "histogram_bin_edges"
*/
enum class histogram_algorithm
{
automatic,
linspace,
logspace,
uniform
};
/**
* @ingroup histogram
* @brief Compute the bin-edges of a histogram of a set of data using different algorithms.
*
* @param data The data.
* @param weights Weight factors corresponding to each data-point.
* @param left The lower-most edge.
* @param right The upper-most edge.
* @param bins The number of bins. [default: 10]
* @param mode The type of algorithm to use. [default: "auto"]
* @return An one-dimensional xarray<double>, length: bins+1.
*/
template <class E1, class E2, class E3>
inline auto histogram_bin_edges(
E1&& data,
E2&& weights,
E3 left,
E3 right,
std::size_t bins = 10,
histogram_algorithm mode = histogram_algorithm::automatic
)
{
// counter and return type
using size_type = common_size_type_t<std::decay_t<E1>, std::decay_t<E2>>;
using value_type = typename std::decay_t<E1>::value_type;
using weights_type = typename std::decay_t<E2>::value_type;
// basic checks
// - rank
XTENSOR_ASSERT(data.dimension() == 1);
XTENSOR_ASSERT(weights.dimension() == 1);
// - size
XTENSOR_ASSERT(weights.size() == data.size());
// - bounds
XTENSOR_ASSERT(left <= right);
// - non-empty
XTENSOR_ASSERT(bins > std::size_t(0));
// act on different modes
switch (mode)
{
// bins of equal width
case histogram_algorithm::automatic:
{
xt::xtensor<value_type, 1> bin_edges = xt::linspace<value_type>(left, right, bins + 1);
return bin_edges;
}
// bins of equal width
case histogram_algorithm::linspace:
{
xt::xtensor<value_type, 1> bin_edges = xt::linspace<value_type>(left, right, bins + 1);
return bin_edges;
}
// bins of logarithmically increasing size
case histogram_algorithm::logspace:
{
using rhs_value_type = std::conditional_t<xtl::is_integral<value_type>::value, double, value_type>;
xtensor<value_type, 1> bin_edges = xt::cast<value_type>(
xt::logspace<rhs_value_type>(std::log10(left), std::log10(right), bins + 1)
);
// TODO: replace above with below after 'xsimd' fix
// xt::xtensor<value_type,1> bin_edges = xt::logspace<value_type>(
// std::log10(left), std::log10(right), bins+1);
return bin_edges;
}
// same amount of data in each bin
case histogram_algorithm::uniform:
{
// indices that sort "data"
auto sorter = xt::argsort(data);
// histogram: all of equal 'height'
// - height
weights_type w = xt::sum<weights_type>(weights)[0] / static_cast<weights_type>(bins);
// - apply to all bins
xt::xtensor<weights_type, 1> count = w * xt::ones<weights_type>({bins});
// take cumulative sum, to act as easy look-up
count = xt::cumsum(count);
// edges
// - allocate
std::vector<size_t> shape = {bins + 1};
xt::xtensor<value_type, 1> bin_edges = xtensor<value_type, 1>::from_shape(shape);
// - first/last edge
bin_edges[0] = left;
bin_edges[bins] = right;
// - cumulative weight
weights_type cum_weight = static_cast<weights_type>(0);
// - current bin
size_type ibin = 0;
// - loop to find interior bin-edges
for (size_type i = 0; i < weights.size(); ++i)
{
if (cum_weight >= count[ibin])
{
bin_edges[ibin + 1] = data[sorter[i]];
++ibin;
}
cum_weight += weights[sorter[i]];
}
return bin_edges;
}
// bins of equal width
default:
{
xt::xtensor<value_type, 1> bin_edges = xt::linspace<value_type>(left, right, bins + 1);
return bin_edges;
}
}
}
/**
* @ingroup histogram
* @brief Compute the bin-edges of a histogram of a set of data using different algorithms.
*
* @param data The data.
* @param weights Weight factors corresponding to each data-point.
* @param bins The number of bins. [default: 10]
* @param mode The type of algorithm to use. [default: "auto"]
* @return An one-dimensional xarray<double>, length: bins+1.
*/
template <class E1, class E2>
inline auto histogram_bin_edges(
E1&& data,
E2&& weights,
std::size_t bins = 10,
histogram_algorithm mode = histogram_algorithm::automatic
)
{
using value_type = typename std::decay_t<E1>::value_type;
std::array<value_type, 2> left_right;
left_right = xt::minmax(data)();
return histogram_bin_edges(
std::forward<E1>(data),
std::forward<E2>(weights),
left_right[0],
left_right[1],
bins,
mode
);
}
/**
* @ingroup histogram
* @brief Compute the bin-edges of a histogram of a set of data using different algorithms.
*
* @param data The data.
* @param bins The number of bins. [default: 10]
* @param mode The type of algorithm to use. [default: "auto"]
* @return An one-dimensional xarray<double>, length: bins+1.
*/
template <class E1>
inline auto
histogram_bin_edges(E1&& data, std::size_t bins = 10, histogram_algorithm mode = histogram_algorithm::automatic)
{
using value_type = typename std::decay_t<E1>::value_type;
auto n = data.size();
std::array<value_type, 2> left_right;
left_right = xt::minmax(data)();
return histogram_bin_edges(
std::forward<E1>(data),
xt::ones<value_type>({n}),
left_right[0],
left_right[1],
bins,
mode
);
}
/**
* @ingroup histogram
* @brief Compute the bin-edges of a histogram of a set of data using different algorithms.
*
* @param data The data.
* @param left The lower-most edge.
* @param right The upper-most edge.
* @param bins The number of bins. [default: 10]
* @param mode The type of algorithm to use. [default: "auto"]
* @return An one-dimensional xarray<double>, length: bins+1.
*/
template <class E1, class E2>
inline auto histogram_bin_edges(
E1&& data,
E2 left,
E2 right,
std::size_t bins = 10,
histogram_algorithm mode = histogram_algorithm::automatic
)
{
using value_type = typename std::decay_t<E1>::value_type;
auto n = data.size();
return histogram_bin_edges(std::forward<E1>(data), xt::ones<value_type>({n}), left, right, bins, mode);
}
/**
* Count number of occurrences of each value in array of non-negative ints.
*
* The number of bins (of size 1) is one larger than the largest value in x.
* If minlength is specified, there will be at least this number of bins in
* the output array (though it will be longer if necessary, depending on the
* contents of x). Each bin gives the number of occurrences of its index
* value in x. If weights is specified the input array is weighted by it,
* i.e. if a value ``n`` is found at position ``i``, ``out[n] += weight[i]``
* instead of ``out[n] += 1``.
*
* @param data the 1D container with integers to count into bins
* @param weights a 1D container with the same number of elements as ``data``
* @param minlength The minlength
*
* @return 1D container with the bincount
*/
template <class E1, class E2, XTL_REQUIRES(is_xexpression<std::decay_t<E2>>)>
inline auto bincount(E1&& data, E2&& weights, std::size_t minlength = 0)
{
using result_value_type = typename std::decay_t<E2>::value_type;
using input_value_type = typename std::decay_t<E1>::value_type;
using size_type = typename std::decay_t<E1>::size_type;
static_assert(
xtl::is_integral<typename std::decay_t<E1>::value_type>::value,
"Bincount data has to be integral type."
);
XTENSOR_ASSERT(data.dimension() == 1);
XTENSOR_ASSERT(weights.dimension() == 1);
std::array<input_value_type, 2> left_right;
left_right = xt::minmax(data)();
if (left_right[0] < input_value_type(0))
{
XTENSOR_THROW(std::runtime_error, "Data argument for bincount can only contain positive integers!");
}
xt::xtensor<result_value_type, 1> res = xt::zeros<result_value_type>(
{(std::max)(minlength, std::size_t(left_right[1] + 1))}
);
for (size_type i = 0; i < data.size(); ++i)
{
res(data(i)) += weights(i);
}
return res;
}
template <class E1>
inline auto bincount(E1&& data, std::size_t minlength = 0)
{
return bincount(
std::forward<E1>(data),
xt::ones<typename std::decay_t<E1>::value_type>(data.shape()),
minlength
);
}
/**
* Get the number of items in each bin, given the fraction of items per bin.
* The output is such that the total number of items of all bins is exactly "N".
*
* @param N the number of items to distribute
* @param weights fraction of items per bin: a 1D container whose size is the number of bins
*
* @return 1D container with the number of items per bin
*/
template <class E>
inline xt::xtensor<size_t, 1> bin_items(size_t N, E&& weights)
{
if (weights.size() <= std::size_t(1))
{
xt::xtensor<size_t, 1> n = N * xt::ones<size_t>({1});
return n;
}
#ifdef XTENSOR_ENABLE_ASSERT
using value_type = typename std::decay_t<E>::value_type;
XTENSOR_ASSERT(xt::all(weights >= static_cast<value_type>(0)));
XTENSOR_ASSERT(xt::sum(weights)() > static_cast<value_type>(0));
#endif
xt::xtensor<double, 1> P = xt::cast<double>(weights) / static_cast<double>(xt::sum(weights)());
xt::xtensor<size_t, 1> n = xt::ceil(static_cast<double>(N) * P);
if (xt::sum(n)() == N)
{
return n;
}
xt::xtensor<size_t, 1> d = xt::zeros<size_t>(P.shape());
xt::xtensor<size_t, 1> sorter = xt::argsort(P);
sorter = xt::view(sorter, xt::range(P.size(), _, -1));
sorter = xt::view(sorter, xt::range(0, xt::sum(n)(0) - N));
xt::view(d, xt::keep(sorter)) = 1;
n -= d;
return n;
}
/**
* Get the number of items in each bin, with each bin having approximately the same number of
* items in it,under the constraint that the total number of items of all bins is exactly "N".
*
* @param N the number of items to distribute
* @param bins the number of bins
*
* @return 1D container with the number of items per bin
*/
inline xt::xtensor<size_t, 1> bin_items(size_t N, size_t bins)
{
return bin_items(N, xt::ones<double>({bins}));
}
}
#endif