Anurag Bhat 86b4fc623c
Merge numpy to pocketpy (#303)
* Merge numpy to pocketpy

* Add CI

* Fix CI
2024-09-02 16:22:41 +08:00

668 lines
24 KiB
C++

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef XTENSOR_ARRAY_HPP
#define XTENSOR_ARRAY_HPP
#include <algorithm>
#include <initializer_list>
#include <utility>
#include <xtl/xsequence.hpp>
#include "xbuffer_adaptor.hpp"
#include "xcontainer.hpp"
#include "xsemantic.hpp"
namespace xt
{
/********************************
* xarray_container declaration *
********************************/
namespace extension
{
template <class EC, layout_type L, class SC, class Tag>
struct xarray_container_base;
template <class EC, layout_type L, class SC>
struct xarray_container_base<EC, L, SC, xtensor_expression_tag>
{
using type = xtensor_empty_base;
};
template <class EC, layout_type L, class SC, class Tag>
using xarray_container_base_t = typename xarray_container_base<EC, L, SC, Tag>::type;
}
template <class EC, layout_type L, class SC, class Tag>
struct xcontainer_inner_types<xarray_container<EC, L, SC, Tag>>
{
using storage_type = EC;
using reference = inner_reference_t<storage_type>;
using const_reference = typename storage_type::const_reference;
using size_type = typename storage_type::size_type;
using shape_type = SC;
using strides_type = get_strides_t<shape_type>;
using backstrides_type = get_strides_t<shape_type>;
using inner_shape_type = shape_type;
using inner_strides_type = strides_type;
using inner_backstrides_type = backstrides_type;
using temporary_type = xarray_container<EC, L, SC, Tag>;
static constexpr layout_type layout = L;
};
template <class EC, layout_type L, class SC, class Tag>
struct xiterable_inner_types<xarray_container<EC, L, SC, Tag>>
: xcontainer_iterable_types<xarray_container<EC, L, SC, Tag>>
{
};
/**
* @class xarray_container
* @brief Dense multidimensional container with tensor semantic.
*
* The xarray_container class implements a dense multidimensional container
* with tensor semantic.
*
* @tparam EC The type of the container holding the elements.
* @tparam L The layout_type of the container.
* @tparam SC The type of the containers holding the shape and the strides.
* @tparam Tag The expression tag.
* @sa xarray, xstrided_container, xcontainer
*/
template <class EC, layout_type L, class SC, class Tag>
class xarray_container : public xstrided_container<xarray_container<EC, L, SC, Tag>>,
public xcontainer_semantic<xarray_container<EC, L, SC, Tag>>,
public extension::xarray_container_base_t<EC, L, SC, Tag>
{
public:
using self_type = xarray_container<EC, L, SC, Tag>;
using base_type = xstrided_container<self_type>;
using semantic_base = xcontainer_semantic<self_type>;
using extension_base = extension::xarray_container_base_t<EC, L, SC, Tag>;
using storage_type = typename base_type::storage_type;
using allocator_type = typename base_type::allocator_type;
using value_type = typename base_type::value_type;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using pointer = typename base_type::pointer;
using const_pointer = typename base_type::const_pointer;
using shape_type = typename base_type::shape_type;
using inner_shape_type = typename base_type::inner_shape_type;
using strides_type = typename base_type::strides_type;
using backstrides_type = typename base_type::backstrides_type;
using inner_strides_type = typename base_type::inner_strides_type;
using inner_backstrides_type = typename base_type::inner_backstrides_type;
using temporary_type = typename semantic_base::temporary_type;
using expression_tag = Tag;
static constexpr std::size_t rank = SIZE_MAX;
xarray_container();
explicit xarray_container(const shape_type& shape, layout_type l = L);
explicit xarray_container(const shape_type& shape, const_reference value, layout_type l = L);
explicit xarray_container(const shape_type& shape, const strides_type& strides);
explicit xarray_container(const shape_type& shape, const strides_type& strides, const_reference value);
explicit xarray_container(storage_type&& storage, inner_shape_type&& shape, inner_strides_type&& strides);
xarray_container(const value_type& t);
xarray_container(nested_initializer_list_t<value_type, 1> t);
xarray_container(nested_initializer_list_t<value_type, 2> t);
xarray_container(nested_initializer_list_t<value_type, 3> t);
xarray_container(nested_initializer_list_t<value_type, 4> t);
xarray_container(nested_initializer_list_t<value_type, 5> t);
template <class S = shape_type>
static xarray_container from_shape(S&& s);
~xarray_container() = default;
xarray_container(const xarray_container&) = default;
xarray_container& operator=(const xarray_container&) = default;
xarray_container(xarray_container&&) = default;
xarray_container& operator=(xarray_container&&) = default;
template <std::size_t N>
explicit xarray_container(xtensor_container<EC, N, L, Tag>&& rhs);
template <std::size_t N>
xarray_container& operator=(xtensor_container<EC, N, L, Tag>&& rhs);
template <class E>
xarray_container(const xexpression<E>& e);
template <class E>
xarray_container& operator=(const xexpression<E>& e);
private:
storage_type m_storage;
storage_type& storage_impl() noexcept;
const storage_type& storage_impl() const noexcept;
friend class xcontainer<xarray_container<EC, L, SC, Tag>>;
};
/******************************
* xarray_adaptor declaration *
******************************/
namespace extension
{
template <class EC, layout_type L, class SC, class Tag>
struct xarray_adaptor_base;
template <class EC, layout_type L, class SC>
struct xarray_adaptor_base<EC, L, SC, xtensor_expression_tag>
{
using type = xtensor_empty_base;
};
template <class EC, layout_type L, class SC, class Tag>
using xarray_adaptor_base_t = typename xarray_adaptor_base<EC, L, SC, Tag>::type;
}
template <class EC, layout_type L, class SC, class Tag>
struct xcontainer_inner_types<xarray_adaptor<EC, L, SC, Tag>>
{
using storage_type = std::remove_reference_t<EC>;
using reference = inner_reference_t<storage_type>;
using const_reference = typename storage_type::const_reference;
using size_type = typename storage_type::size_type;
using shape_type = SC;
using strides_type = get_strides_t<shape_type>;
using backstrides_type = get_strides_t<shape_type>;
using inner_shape_type = shape_type;
using inner_strides_type = strides_type;
using inner_backstrides_type = backstrides_type;
using temporary_type = xarray_container<temporary_container_t<storage_type>, L, SC, Tag>;
static constexpr layout_type layout = L;
};
template <class EC, layout_type L, class SC, class Tag>
struct xiterable_inner_types<xarray_adaptor<EC, L, SC, Tag>>
: xcontainer_iterable_types<xarray_adaptor<EC, L, SC, Tag>>
{
};
/**
* @class xarray_adaptor
* @brief Dense multidimensional container adaptor with
* tensor semantic.
*
* The xarray_adaptor class implements a dense multidimensional
* container adaptor with tensor semantic. It is used to provide
* a multidimensional container semantic and a tensor semantic to
* stl-like containers.
*
* @tparam EC The closure for the container type to adapt.
* @tparam L The layout_type of the adaptor.
* @tparam SC The type of the containers holding the shape and the strides.
* @tparam Tag The expression tag.
* @sa xstrided_container, xcontainer
*/
template <class EC, layout_type L, class SC, class Tag>
class xarray_adaptor : public xstrided_container<xarray_adaptor<EC, L, SC, Tag>>,
public xcontainer_semantic<xarray_adaptor<EC, L, SC, Tag>>,
public extension::xarray_adaptor_base_t<EC, L, SC, Tag>
{
public:
using container_closure_type = EC;
using self_type = xarray_adaptor<EC, L, SC, Tag>;
using base_type = xstrided_container<self_type>;
using semantic_base = xcontainer_semantic<self_type>;
using extension_base = extension::xarray_adaptor_base_t<EC, L, SC, Tag>;
using storage_type = typename base_type::storage_type;
using allocator_type = typename base_type::allocator_type;
using shape_type = typename base_type::shape_type;
using strides_type = typename base_type::strides_type;
using backstrides_type = typename base_type::backstrides_type;
using temporary_type = typename semantic_base::temporary_type;
using expression_tag = Tag;
static constexpr std::size_t rank = SIZE_MAX;
xarray_adaptor(storage_type&& storage);
xarray_adaptor(const storage_type& storage);
template <class D>
xarray_adaptor(D&& storage, const shape_type& shape, layout_type l = L);
template <class D>
xarray_adaptor(D&& storage, const shape_type& shape, const strides_type& strides);
~xarray_adaptor() = default;
xarray_adaptor(const xarray_adaptor&) = default;
xarray_adaptor& operator=(const xarray_adaptor&);
xarray_adaptor(xarray_adaptor&&) = default;
xarray_adaptor& operator=(xarray_adaptor&&);
xarray_adaptor& operator=(temporary_type&&);
template <class E>
xarray_adaptor& operator=(const xexpression<E>& e);
template <class P, class S>
void reset_buffer(P&& pointer, S&& size);
private:
container_closure_type m_storage;
storage_type& storage_impl() noexcept;
const storage_type& storage_impl() const noexcept;
friend class xcontainer<xarray_adaptor<EC, L, SC, Tag>>;
};
/***********************************
* xarray_container implementation *
***********************************/
/**
* @name Constructors
*/
//@{
/**
* Allocates an uninitialized xarray_container that holds 0 element.
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container()
: base_type()
, m_storage(1, value_type())
{
}
/**
* Allocates an uninitialized xarray_container with the specified shape and
* layout_type.
* @param shape the shape of the xarray_container
* @param l the layout_type of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(const shape_type& shape, layout_type l)
: base_type()
{
base_type::resize(shape, l);
}
/**
* Allocates an xarray_container with the specified shape and layout_type. Elements
* are initialized to the specified value.
* @param shape the shape of the xarray_container
* @param value the value of the elements
* @param l the layout_type of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(
const shape_type& shape,
const_reference value,
layout_type l
)
: base_type()
{
base_type::resize(shape, l);
std::fill(m_storage.begin(), m_storage.end(), value);
}
/**
* Allocates an uninitialized xarray_container with the specified shape and strides.
* @param shape the shape of the xarray_container
* @param strides the strides of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(const shape_type& shape, const strides_type& strides)
: base_type()
{
base_type::resize(shape, strides);
}
/**
* Allocates an uninitialized xarray_container with the specified shape and strides.
* Elements are initialized to the specified value.
* @param shape the shape of the xarray_container
* @param strides the strides of the xarray_container
* @param value the value of the elements
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(
const shape_type& shape,
const strides_type& strides,
const_reference value
)
: base_type()
{
base_type::resize(shape, strides);
std::fill(m_storage.begin(), m_storage.end(), value);
}
/**
* Allocates an xarray_container that holds a single element initialized to the
* specified value.
* @param t the value of the element
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(const value_type& t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t), true);
nested_copy(m_storage.begin(), t);
}
/**
* Allocates an xarray_container by moving specified data, shape and strides
*
* @param storage the data for the xarray_container
* @param shape the shape of the xarray_container
* @param strides the strides of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(
storage_type&& storage,
inner_shape_type&& shape,
inner_strides_type&& strides
)
: base_type(std::move(shape), std::move(strides))
, m_storage(std::move(storage))
{
}
//@}
/**
* @name Constructors from initializer list
*/
//@{
/**
* Allocates a one-dimensional xarray_container.
* @param t the elements of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(nested_initializer_list_t<value_type, 1> t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t));
constexpr auto tmp = layout_type::row_major;
L == tmp ? nested_copy(m_storage.begin(), t) : nested_copy(this->template begin<tmp>(), t);
}
/**
* Allocates a two-dimensional xarray_container.
* @param t the elements of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(nested_initializer_list_t<value_type, 2> t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t));
constexpr auto tmp = layout_type::row_major;
L == tmp ? nested_copy(m_storage.begin(), t) : nested_copy(this->template begin<tmp>(), t);
}
/**
* Allocates a three-dimensional xarray_container.
* @param t the elements of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(nested_initializer_list_t<value_type, 3> t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t));
constexpr auto tmp = layout_type::row_major;
L == tmp ? nested_copy(m_storage.begin(), t) : nested_copy(this->template begin<tmp>(), t);
}
/**
* Allocates a four-dimensional xarray_container.
* @param t the elements of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(nested_initializer_list_t<value_type, 4> t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t));
constexpr auto tmp = layout_type::row_major;
L == tmp ? nested_copy(m_storage.begin(), t) : nested_copy(this->template begin<tmp>(), t);
}
/**
* Allocates a five-dimensional xarray_container.
* @param t the elements of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_container<EC, L, SC, Tag>::xarray_container(nested_initializer_list_t<value_type, 5> t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t));
constexpr auto tmp = layout_type::row_major;
L == tmp ? nested_copy(m_storage.begin(), t) : nested_copy(this->template begin<tmp>(), t);
}
//@}
/**
* Allocates and returns an xarray_container with the specified shape.
* @param s the shape of the xarray_container
*/
template <class EC, layout_type L, class SC, class Tag>
template <class S>
inline xarray_container<EC, L, SC, Tag> xarray_container<EC, L, SC, Tag>::from_shape(S&& s)
{
shape_type shape = xtl::forward_sequence<shape_type, S>(s);
return self_type(shape);
}
template <class EC, layout_type L, class SC, class Tag>
template <std::size_t N>
inline xarray_container<EC, L, SC, Tag>::xarray_container(xtensor_container<EC, N, L, Tag>&& rhs)
: base_type(
inner_shape_type(rhs.shape().cbegin(), rhs.shape().cend()),
inner_strides_type(rhs.strides().cbegin(), rhs.strides().cend()),
inner_backstrides_type(rhs.backstrides().cbegin(), rhs.backstrides().cend()),
std::move(rhs.layout())
)
, m_storage(std::move(rhs.storage()))
{
}
template <class EC, layout_type L, class SC, class Tag>
template <std::size_t N>
inline xarray_container<EC, L, SC, Tag>&
xarray_container<EC, L, SC, Tag>::operator=(xtensor_container<EC, N, L, Tag>&& rhs)
{
this->shape_impl().assign(rhs.shape().cbegin(), rhs.shape().cend());
this->strides_impl().assign(rhs.strides().cbegin(), rhs.strides().cend());
this->backstrides_impl().assign(rhs.backstrides().cbegin(), rhs.backstrides().cend());
this->mutable_layout() = rhs.layout();
m_storage = std::move(rhs.storage());
return *this;
}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended copy constructor.
*/
template <class EC, layout_type L, class SC, class Tag>
template <class E>
inline xarray_container<EC, L, SC, Tag>::xarray_container(const xexpression<E>& e)
: base_type()
{
// Avoids unintialized data because of (m_shape == shape) condition
// in resize (called by assign), which is always true when dimension == 0.
if (e.derived_cast().dimension() == 0)
{
detail::resize_data_container(m_storage, std::size_t(1));
}
semantic_base::assign(e);
}
/**
* The extended assignment operator.
*/
template <class EC, layout_type L, class SC, class Tag>
template <class E>
inline auto xarray_container<EC, L, SC, Tag>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_container<EC, L, SC, Tag>::storage_impl() noexcept -> storage_type&
{
return m_storage;
}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_container<EC, L, SC, Tag>::storage_impl() const noexcept -> const storage_type&
{
return m_storage;
}
/******************
* xarray_adaptor *
******************/
/**
* @name Constructors
*/
//@{
/**
* Constructs an xarray_adaptor of the given stl-like container.
* @param storage the container to adapt
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_adaptor<EC, L, SC, Tag>::xarray_adaptor(storage_type&& storage)
: base_type()
, m_storage(std::move(storage))
{
}
/**
* Constructs an xarray_adaptor of the given stl-like container.
* @param storage the container to adapt
*/
template <class EC, layout_type L, class SC, class Tag>
inline xarray_adaptor<EC, L, SC, Tag>::xarray_adaptor(const storage_type& storage)
: base_type()
, m_storage(storage)
{
}
/**
* Constructs an xarray_adaptor of the given stl-like container,
* with the specified shape and layout_type.
* @param storage the container to adapt
* @param shape the shape of the xarray_adaptor
* @param l the layout_type of the xarray_adaptor
*/
template <class EC, layout_type L, class SC, class Tag>
template <class D>
inline xarray_adaptor<EC, L, SC, Tag>::xarray_adaptor(D&& storage, const shape_type& shape, layout_type l)
: base_type()
, m_storage(std::forward<D>(storage))
{
base_type::resize(shape, l);
}
/**
* Constructs an xarray_adaptor of the given stl-like container,
* with the specified shape and strides.
* @param storage the container to adapt
* @param shape the shape of the xarray_adaptor
* @param strides the strides of the xarray_adaptor
*/
template <class EC, layout_type L, class SC, class Tag>
template <class D>
inline xarray_adaptor<EC, L, SC, Tag>::xarray_adaptor(
D&& storage,
const shape_type& shape,
const strides_type& strides
)
: base_type()
, m_storage(std::forward<D>(storage))
{
base_type::resize(shape, strides);
}
//@}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_adaptor<EC, L, SC, Tag>::operator=(const xarray_adaptor& rhs) -> self_type&
{
base_type::operator=(rhs);
m_storage = rhs.m_storage;
return *this;
}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_adaptor<EC, L, SC, Tag>::operator=(xarray_adaptor&& rhs) -> self_type&
{
base_type::operator=(std::move(rhs));
m_storage = rhs.m_storage;
return *this;
}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_adaptor<EC, L, SC, Tag>::operator=(temporary_type&& rhs) -> self_type&
{
base_type::shape_impl() = std::move(const_cast<shape_type&>(rhs.shape()));
base_type::strides_impl() = std::move(const_cast<strides_type&>(rhs.strides()));
base_type::backstrides_impl() = std::move(const_cast<backstrides_type&>(rhs.backstrides()));
m_storage = std::move(rhs.storage());
return *this;
}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended assignment operator.
*/
template <class EC, layout_type L, class SC, class Tag>
template <class E>
inline auto xarray_adaptor<EC, L, SC, Tag>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_adaptor<EC, L, SC, Tag>::storage_impl() noexcept -> storage_type&
{
return m_storage;
}
template <class EC, layout_type L, class SC, class Tag>
inline auto xarray_adaptor<EC, L, SC, Tag>::storage_impl() const noexcept -> const storage_type&
{
return m_storage;
}
template <class EC, layout_type L, class SC, class Tag>
template <class P, class S>
inline void xarray_adaptor<EC, L, SC, Tag>::reset_buffer(P&& pointer, S&& size)
{
return m_storage.reset_data(std::forward<P>(pointer), std::forward<S>(size));
}
}
#endif