mirror of
https://github.com/pocketpy/pocketpy
synced 2025-10-19 19:10:17 +00:00
73 lines
1.3 KiB
Python
73 lines
1.3 KiB
Python
import random as r
|
|
|
|
r.seed(10)
|
|
|
|
for _ in range(100):
|
|
i = r.randint(1, 10)
|
|
assert i <= 10
|
|
assert i >= 1
|
|
i = r.random()
|
|
assert 0.0 <= i <= 1.0
|
|
i = r.uniform(3.0, 9.5)
|
|
assert 3.0 <= i <= 9.5
|
|
|
|
a = [1, 2, 3, 4]
|
|
r.shuffle(a)
|
|
|
|
for i in range(10):
|
|
assert r.choice(a) in a
|
|
|
|
for i in range(10):
|
|
assert r.choice(tuple(a)) in a
|
|
|
|
for i in range(10):
|
|
assert r.randint(1, 1) == 1
|
|
|
|
# test choices
|
|
x = (1,)
|
|
res = r.choices(x, k=4)
|
|
assert (res == [1, 1, 1, 1]), res
|
|
|
|
w = (1, 2, 3)
|
|
assert r.choices([1, 2, 3], (0.0, 0.0, 0.5)) == [3]
|
|
|
|
try:
|
|
r.choices([1, 2, 3], (0.0, 0.0, 0.5, 0.5))
|
|
exit(1)
|
|
except ValueError:
|
|
pass
|
|
|
|
try:
|
|
r.choices([])
|
|
exit(1)
|
|
except IndexError:
|
|
pass
|
|
|
|
seq = [1, 2, 3, 4]
|
|
weights = [0.1, 0.2, 0.2, 0.5]
|
|
k = 1000
|
|
res = r.choices(seq, weights, k=k)
|
|
assert len(res) == k and isinstance(res, list)
|
|
|
|
max_error = 0.03
|
|
for i in range(len(seq)):
|
|
actual_w = res.count(seq[i]) / k
|
|
assert abs(actual_w - weights[i]) < max_error
|
|
|
|
# test seed
|
|
from random import randint, seed
|
|
seed(7)
|
|
a = randint(1, 100)
|
|
b = randint(-2**60, 1)
|
|
c = randint(50, 100)
|
|
|
|
assert (a, b, c) == (16, -418020281577586157, 76)
|
|
|
|
seed(7)
|
|
assert a == randint(1, 100)
|
|
assert b == randint(-2**60, 1)
|
|
assert c == randint(50, 100)
|
|
|
|
import random
|
|
assert random.Random(7).randint(1, 100) == a
|