Anurag Bhat 86b4fc623c
Merge numpy to pocketpy (#303)
* Merge numpy to pocketpy

* Add CI

* Fix CI
2024-09-02 16:22:41 +08:00

984 lines
35 KiB
C++

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef XTENSOR_TENSOR_HPP
#define XTENSOR_TENSOR_HPP
#include <algorithm>
#include <array>
#include <cstddef>
#include <utility>
#include <vector>
#include "xbuffer_adaptor.hpp"
#include "xcontainer.hpp"
#include "xsemantic.hpp"
namespace xt
{
/***********************
* xtensor declaration *
***********************/
namespace extension
{
template <class EC, std::size_t N, layout_type L, class Tag>
struct xtensor_container_base;
template <class EC, std::size_t N, layout_type L>
struct xtensor_container_base<EC, N, L, xtensor_expression_tag>
{
using type = xtensor_empty_base;
};
template <class EC, std::size_t N, layout_type L, class Tag>
using xtensor_container_base_t = typename xtensor_container_base<EC, N, L, Tag>::type;
}
template <class EC, std::size_t N, layout_type L, class Tag>
struct xcontainer_inner_types<xtensor_container<EC, N, L, Tag>>
{
using storage_type = EC;
using reference = inner_reference_t<storage_type>;
using const_reference = typename storage_type::const_reference;
using size_type = typename storage_type::size_type;
using shape_type = std::array<typename storage_type::size_type, N>;
using strides_type = get_strides_t<shape_type>;
using backstrides_type = get_strides_t<shape_type>;
using inner_shape_type = shape_type;
using inner_strides_type = strides_type;
using inner_backstrides_type = backstrides_type;
using temporary_type = xtensor_container<EC, N, L, Tag>;
static constexpr layout_type layout = L;
};
template <class EC, std::size_t N, layout_type L, class Tag>
struct xiterable_inner_types<xtensor_container<EC, N, L, Tag>>
: xcontainer_iterable_types<xtensor_container<EC, N, L, Tag>>
{
};
/**
* @class xtensor_container
* @brief Dense multidimensional container with tensor semantic and fixed
* dimension.
*
* The xtensor_container class implements a dense multidimensional container
* with tensor semantics and fixed dimension
*
* @tparam EC The type of the container holding the elements.
* @tparam N The dimension of the container.
* @tparam L The layout_type of the tensor.
* @tparam Tag The expression tag.
* @sa xtensor, xstrided_container, xcontainer
*/
template <class EC, std::size_t N, layout_type L, class Tag>
class xtensor_container : public xstrided_container<xtensor_container<EC, N, L, Tag>>,
public xcontainer_semantic<xtensor_container<EC, N, L, Tag>>,
public extension::xtensor_container_base_t<EC, N, L, Tag>
{
public:
using self_type = xtensor_container<EC, N, L, Tag>;
using base_type = xstrided_container<self_type>;
using semantic_base = xcontainer_semantic<self_type>;
using extension_base = extension::xtensor_container_base_t<EC, N, L, Tag>;
using storage_type = typename base_type::storage_type;
using allocator_type = typename base_type::allocator_type;
using value_type = typename base_type::value_type;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using pointer = typename base_type::pointer;
using const_pointer = typename base_type::const_pointer;
using shape_type = typename base_type::shape_type;
using inner_shape_type = typename base_type::inner_shape_type;
using strides_type = typename base_type::strides_type;
using backstrides_type = typename base_type::backstrides_type;
using inner_backstrides_type = typename base_type::inner_backstrides_type;
using inner_strides_type = typename base_type::inner_strides_type;
using temporary_type = typename semantic_base::temporary_type;
using expression_tag = Tag;
static constexpr std::size_t rank = N;
xtensor_container();
xtensor_container(nested_initializer_list_t<value_type, N> t);
explicit xtensor_container(const shape_type& shape, layout_type l = L);
explicit xtensor_container(const shape_type& shape, const_reference value, layout_type l = L);
explicit xtensor_container(const shape_type& shape, const strides_type& strides);
explicit xtensor_container(const shape_type& shape, const strides_type& strides, const_reference value);
explicit xtensor_container(storage_type&& storage, inner_shape_type&& shape, inner_strides_type&& strides);
template <class S = shape_type>
static xtensor_container from_shape(S&& s);
~xtensor_container() = default;
xtensor_container(const xtensor_container&) = default;
xtensor_container& operator=(const xtensor_container&) = default;
xtensor_container(xtensor_container&&) = default;
xtensor_container& operator=(xtensor_container&&) = default;
template <class SC>
explicit xtensor_container(xarray_container<EC, L, SC, Tag>&&);
template <class SC>
xtensor_container& operator=(xarray_container<EC, L, SC, Tag>&&);
template <class E>
xtensor_container(const xexpression<E>& e);
template <class E>
xtensor_container& operator=(const xexpression<E>& e);
private:
storage_type m_storage;
storage_type& storage_impl() noexcept;
const storage_type& storage_impl() const noexcept;
friend class xcontainer<xtensor_container<EC, N, L, Tag>>;
};
/*****************************************
* xtensor_container_adaptor declaration *
*****************************************/
namespace extension
{
template <class EC, std::size_t N, layout_type L, class Tag>
struct xtensor_adaptor_base;
template <class EC, std::size_t N, layout_type L>
struct xtensor_adaptor_base<EC, N, L, xtensor_expression_tag>
{
using type = xtensor_empty_base;
};
template <class EC, std::size_t N, layout_type L, class Tag>
using xtensor_adaptor_base_t = typename xtensor_adaptor_base<EC, N, L, Tag>::type;
}
template <class EC, std::size_t N, layout_type L, class Tag>
struct xcontainer_inner_types<xtensor_adaptor<EC, N, L, Tag>>
{
using storage_type = std::remove_reference_t<EC>;
using reference = inner_reference_t<storage_type>;
using const_reference = typename storage_type::const_reference;
using size_type = typename storage_type::size_type;
using shape_type = std::array<typename storage_type::size_type, N>;
using strides_type = get_strides_t<shape_type>;
using backstrides_type = get_strides_t<shape_type>;
using inner_shape_type = shape_type;
using inner_strides_type = strides_type;
using inner_backstrides_type = backstrides_type;
using temporary_type = xtensor_container<temporary_container_t<storage_type>, N, L, Tag>;
static constexpr layout_type layout = L;
};
template <class EC, std::size_t N, layout_type L, class Tag>
struct xiterable_inner_types<xtensor_adaptor<EC, N, L, Tag>>
: xcontainer_iterable_types<xtensor_adaptor<EC, N, L, Tag>>
{
};
/**
* @class xtensor_adaptor
* @brief Dense multidimensional container adaptor with tensor
* semantics and fixed dimension.
*
* The xtensor_adaptor class implements a dense multidimensional
* container adaptor with tensor semantics and fixed dimension. It
* is used to provide a multidimensional container semantic and a
* tensor semantic to stl-like containers.
*
* @tparam EC The closure for the container type to adapt.
* @tparam N The dimension of the adaptor.
* @tparam L The layout_type of the adaptor.
* @tparam Tag The expression tag.
* @sa xstrided_container, xcontainer
*/
template <class EC, std::size_t N, layout_type L, class Tag>
class xtensor_adaptor : public xstrided_container<xtensor_adaptor<EC, N, L, Tag>>,
public xcontainer_semantic<xtensor_adaptor<EC, N, L, Tag>>,
public extension::xtensor_adaptor_base_t<EC, N, L, Tag>
{
public:
using container_closure_type = EC;
using self_type = xtensor_adaptor<EC, N, L, Tag>;
using base_type = xstrided_container<self_type>;
using semantic_base = xcontainer_semantic<self_type>;
using extension_base = extension::xtensor_adaptor_base_t<EC, N, L, Tag>;
using storage_type = typename base_type::storage_type;
using allocator_type = typename base_type::allocator_type;
using shape_type = typename base_type::shape_type;
using strides_type = typename base_type::strides_type;
using backstrides_type = typename base_type::backstrides_type;
using temporary_type = typename semantic_base::temporary_type;
using expression_tag = Tag;
static constexpr std::size_t rank = N;
xtensor_adaptor(storage_type&& storage);
xtensor_adaptor(const storage_type& storage);
template <class D>
xtensor_adaptor(D&& storage, const shape_type& shape, layout_type l = L);
template <class D>
xtensor_adaptor(D&& storage, const shape_type& shape, const strides_type& strides);
~xtensor_adaptor() = default;
xtensor_adaptor(const xtensor_adaptor&) = default;
xtensor_adaptor& operator=(const xtensor_adaptor&);
xtensor_adaptor(xtensor_adaptor&&) = default;
xtensor_adaptor& operator=(xtensor_adaptor&&);
xtensor_adaptor& operator=(temporary_type&&);
template <class E>
xtensor_adaptor& operator=(const xexpression<E>& e);
template <class P, class S>
void reset_buffer(P&& pointer, S&& size);
private:
container_closure_type m_storage;
storage_type& storage_impl() noexcept;
const storage_type& storage_impl() const noexcept;
friend class xcontainer<xtensor_adaptor<EC, N, L, Tag>>;
};
/****************************
* xtensor_view declaration *
****************************/
template <class EC, std::size_t N, layout_type L, class Tag>
class xtensor_view;
namespace extension
{
template <class EC, std::size_t N, layout_type L, class Tag>
struct xtensor_view_base;
template <class EC, std::size_t N, layout_type L>
struct xtensor_view_base<EC, N, L, xtensor_expression_tag>
{
using type = xtensor_empty_base;
};
template <class EC, std::size_t N, layout_type L, class Tag>
using xtensor_view_base_t = typename xtensor_view_base<EC, N, L, Tag>::type;
}
template <class EC, std::size_t N, layout_type L, class Tag>
struct xcontainer_inner_types<xtensor_view<EC, N, L, Tag>>
{
using storage_type = std::remove_reference_t<EC>;
using reference = inner_reference_t<storage_type>;
using const_reference = typename storage_type::const_reference;
using size_type = typename storage_type::size_type;
using shape_type = std::array<typename storage_type::size_type, N>;
using strides_type = get_strides_t<shape_type>;
using backstrides_type = get_strides_t<shape_type>;
using inner_shape_type = shape_type;
using inner_strides_type = strides_type;
using inner_backstrides_type = backstrides_type;
using temporary_type = xtensor_container<temporary_container_t<storage_type>, N, L, Tag>;
static constexpr layout_type layout = L;
};
template <class EC, std::size_t N, layout_type L, class Tag>
struct xiterable_inner_types<xtensor_view<EC, N, L, Tag>>
: xcontainer_iterable_types<xtensor_view<EC, N, L, Tag>>
{
};
/**
* @class xtensor_view
* @brief Dense multidimensional container adaptor with view
* semantics and fixed dimension.
*
* The xtensor_view class implements a dense multidimensional
* container adaptor with viewsemantics and fixed dimension. It
* is used to provide a multidimensional container semantic and a
* view semantic to stl-like containers.
*
* @tparam EC The closure for the container type to adapt.
* @tparam N The dimension of the view.
* @tparam L The layout_type of the view.
* @tparam Tag The expression tag.
* @sa xstrided_container, xcontainer
*/
template <class EC, std::size_t N, layout_type L, class Tag>
class xtensor_view : public xstrided_container<xtensor_view<EC, N, L, Tag>>,
public xview_semantic<xtensor_view<EC, N, L, Tag>>,
public extension::xtensor_view_base_t<EC, N, L, Tag>
{
public:
using container_closure_type = EC;
using self_type = xtensor_view<EC, N, L, Tag>;
using base_type = xstrided_container<self_type>;
using semantic_base = xview_semantic<self_type>;
using extension_base = extension::xtensor_adaptor_base_t<EC, N, L, Tag>;
using storage_type = typename base_type::storage_type;
using allocator_type = typename base_type::allocator_type;
using shape_type = typename base_type::shape_type;
using strides_type = typename base_type::strides_type;
using backstrides_type = typename base_type::backstrides_type;
using temporary_type = typename semantic_base::temporary_type;
using expression_tag = Tag;
xtensor_view(storage_type&& storage);
xtensor_view(const storage_type& storage);
template <class D>
xtensor_view(D&& storage, const shape_type& shape, layout_type l = L);
template <class D>
xtensor_view(D&& storage, const shape_type& shape, const strides_type& strides);
~xtensor_view() = default;
xtensor_view(const xtensor_view&) = default;
xtensor_view& operator=(const xtensor_view&);
xtensor_view(xtensor_view&&) = default;
xtensor_view& operator=(xtensor_view&&);
template <class E>
self_type& operator=(const xexpression<E>& e);
template <class E>
disable_xexpression<E, self_type>& operator=(const E& e);
private:
container_closure_type m_storage;
storage_type& storage_impl() noexcept;
const storage_type& storage_impl() const noexcept;
void assign_temporary_impl(temporary_type&& tmp);
friend class xcontainer<xtensor_view<EC, N, L, Tag>>;
friend class xview_semantic<xtensor_view<EC, N, L, Tag>>;
};
namespace detail
{
template <class V>
struct tensor_view_simd_helper
{
using valid_return_type = detail::has_simd_interface_impl<V, typename V::value_type>;
using valid_reference = std::is_lvalue_reference<typename V::reference>;
static constexpr bool value = valid_return_type::value && valid_reference::value;
using type = std::integral_constant<bool, value>;
};
}
// xtensor_view can be used on pseudo containers, i.e. containers
// whose access operator does not return a reference. Since it
// is not possible to take the address f a temporary, the load_simd
// method implementation leads to a compilation error.
template <class EC, std::size_t N, layout_type L, class Tag>
struct has_simd_interface<xtensor_view<EC, N, L, Tag>>
: detail::tensor_view_simd_helper<xtensor_view<EC, N, L, Tag>>::type
{
};
/************************************
* xtensor_container implementation *
************************************/
/**
* @name Constructors
*/
//@{
/**
* Allocates an uninitialized xtensor_container that holds 0 elements.
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container()
: base_type()
, m_storage(N == 0 ? 1 : 0, value_type())
{
}
/**
* Allocates an xtensor_container with nested initializer lists.
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(nested_initializer_list_t<value_type, N> t)
: base_type()
{
base_type::resize(xt::shape<shape_type>(t), true);
constexpr auto tmp = layout_type::row_major;
L == tmp ? nested_copy(m_storage.begin(), t) : nested_copy(this->template begin<tmp>(), t);
}
/**
* Allocates an uninitialized xtensor_container with the specified shape and
* layout_type.
* @param shape the shape of the xtensor_container
* @param l the layout_type of the xtensor_container
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(const shape_type& shape, layout_type l)
: base_type()
{
base_type::resize(shape, l);
}
/**
* Allocates an xtensor_container with the specified shape and layout_type. Elements
* are initialized to the specified value.
* @param shape the shape of the xtensor_container
* @param value the value of the elements
* @param l the layout_type of the xtensor_container
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(
const shape_type& shape,
const_reference value,
layout_type l
)
: base_type()
{
base_type::resize(shape, l);
std::fill(m_storage.begin(), m_storage.end(), value);
}
/**
* Allocates an uninitialized xtensor_container with the specified shape and strides.
* @param shape the shape of the xtensor_container
* @param strides the strides of the xtensor_container
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(const shape_type& shape, const strides_type& strides)
: base_type()
{
base_type::resize(shape, strides);
}
/**
* Allocates an uninitialized xtensor_container with the specified shape and strides.
* Elements are initialized to the specified value.
* @param shape the shape of the xtensor_container
* @param strides the strides of the xtensor_container
* @param value the value of the elements
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(
const shape_type& shape,
const strides_type& strides,
const_reference value
)
: base_type()
{
base_type::resize(shape, strides);
std::fill(m_storage.begin(), m_storage.end(), value);
}
/**
* Allocates an xtensor_container by moving specified data, shape and strides
*
* @param storage the data for the xtensor_container
* @param shape the shape of the xtensor_container
* @param strides the strides of the xtensor_container
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(
storage_type&& storage,
inner_shape_type&& shape,
inner_strides_type&& strides
)
: base_type(std::move(shape), std::move(strides))
, m_storage(std::move(storage))
{
}
template <class EC, std::size_t N, layout_type L, class Tag>
template <class SC>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(xarray_container<EC, L, SC, Tag>&& rhs)
: base_type(
xtl::forward_sequence<inner_shape_type, decltype(rhs.shape())>(rhs.shape()),
xtl::forward_sequence<inner_strides_type, decltype(rhs.strides())>(rhs.strides()),
xtl::forward_sequence<inner_backstrides_type, decltype(rhs.backstrides())>(rhs.backstrides()),
std::move(rhs.layout())
)
, m_storage(std::move(rhs.storage()))
{
}
template <class EC, std::size_t N, layout_type L, class Tag>
template <class SC>
inline xtensor_container<EC, N, L, Tag>&
xtensor_container<EC, N, L, Tag>::operator=(xarray_container<EC, L, SC, Tag>&& rhs)
{
XTENSOR_ASSERT_MSG(N == rhs.dimension(), "Cannot change dimension of xtensor.");
std::copy(rhs.shape().begin(), rhs.shape().end(), this->shape_impl().begin());
std::copy(rhs.strides().cbegin(), rhs.strides().cend(), this->strides_impl().begin());
std::copy(rhs.backstrides().cbegin(), rhs.backstrides().cend(), this->backstrides_impl().begin());
this->mutable_layout() = std::move(rhs.layout());
m_storage = std::move(std::move(rhs.storage()));
return *this;
}
template <class EC, std::size_t N, layout_type L, class Tag>
template <class S>
inline xtensor_container<EC, N, L, Tag> xtensor_container<EC, N, L, Tag>::from_shape(S&& s)
{
XTENSOR_ASSERT_MSG(s.size() == N, "Cannot change dimension of xtensor.");
shape_type shape = xtl::forward_sequence<shape_type, S>(s);
return self_type(shape);
}
//@}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended copy constructor.
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class E>
inline xtensor_container<EC, N, L, Tag>::xtensor_container(const xexpression<E>& e)
: base_type()
{
XTENSOR_ASSERT_MSG(N == e.derived_cast().dimension(), "Cannot change dimension of xtensor.");
// Avoids uninitialized data because of (m_shape == shape) condition
// in resize (called by assign), which is always true when dimension() == 0.
if (e.derived_cast().dimension() == 0)
{
detail::resize_data_container(m_storage, std::size_t(1));
}
semantic_base::assign(e);
}
/**
* The extended assignment operator.
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class E>
inline auto xtensor_container<EC, N, L, Tag>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_container<EC, N, L, Tag>::storage_impl() noexcept -> storage_type&
{
return m_storage;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_container<EC, N, L, Tag>::storage_impl() const noexcept -> const storage_type&
{
return m_storage;
}
/**********************************
* xtensor_adaptor implementation *
**********************************/
/**
* @name Constructors
*/
//@{
/**
* Constructs an xtensor_adaptor of the given stl-like container.
* @param storage the container to adapt
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_adaptor<EC, N, L, Tag>::xtensor_adaptor(storage_type&& storage)
: base_type()
, m_storage(std::move(storage))
{
}
/**
* Constructs an xtensor_adaptor of the given stl-like container.
* @param storage the container to adapt
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_adaptor<EC, N, L, Tag>::xtensor_adaptor(const storage_type& storage)
: base_type()
, m_storage(storage)
{
}
/**
* Constructs an xtensor_adaptor of the given stl-like container,
* with the specified shape and layout_type.
* @param storage the container to adapt
* @param shape the shape of the xtensor_adaptor
* @param l the layout_type of the xtensor_adaptor
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class D>
inline xtensor_adaptor<EC, N, L, Tag>::xtensor_adaptor(D&& storage, const shape_type& shape, layout_type l)
: base_type()
, m_storage(std::forward<D>(storage))
{
base_type::resize(shape, l);
}
/**
* Constructs an xtensor_adaptor of the given stl-like container,
* with the specified shape and strides.
* @param storage the container to adapt
* @param shape the shape of the xtensor_adaptor
* @param strides the strides of the xtensor_adaptor
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class D>
inline xtensor_adaptor<EC, N, L, Tag>::xtensor_adaptor(
D&& storage,
const shape_type& shape,
const strides_type& strides
)
: base_type()
, m_storage(std::forward<D>(storage))
{
base_type::resize(shape, strides);
}
//@}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_adaptor<EC, N, L, Tag>::operator=(const xtensor_adaptor& rhs) -> self_type&
{
base_type::operator=(rhs);
m_storage = rhs.m_storage;
return *this;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_adaptor<EC, N, L, Tag>::operator=(xtensor_adaptor&& rhs) -> self_type&
{
base_type::operator=(std::move(rhs));
m_storage = rhs.m_storage;
return *this;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_adaptor<EC, N, L, Tag>::operator=(temporary_type&& rhs) -> self_type&
{
base_type::shape_impl() = std::move(const_cast<shape_type&>(rhs.shape()));
base_type::strides_impl() = std::move(const_cast<strides_type&>(rhs.strides()));
base_type::backstrides_impl() = std::move(const_cast<backstrides_type&>(rhs.backstrides()));
m_storage = std::move(rhs.storage());
return *this;
}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended assignment operator.
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class E>
inline auto xtensor_adaptor<EC, N, L, Tag>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_adaptor<EC, N, L, Tag>::storage_impl() noexcept -> storage_type&
{
return m_storage;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_adaptor<EC, N, L, Tag>::storage_impl() const noexcept -> const storage_type&
{
return m_storage;
}
template <class EC, std::size_t N, layout_type L, class Tag>
template <class P, class S>
inline void xtensor_adaptor<EC, N, L, Tag>::reset_buffer(P&& pointer, S&& size)
{
return m_storage.reset_data(std::forward<P>(pointer), std::forward<S>(size));
}
/*******************************
* xtensor_view implementation *
*******************************/
/**
* @name Constructors
*/
//@{
/**
* Constructs an xtensor_view of the given stl-like container.
* @param storage the container to adapt
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_view<EC, N, L, Tag>::xtensor_view(storage_type&& storage)
: base_type()
, m_storage(std::move(storage))
{
}
/**
* Constructs an xtensor_view of the given stl-like container.
* @param storage the container to adapt
*/
template <class EC, std::size_t N, layout_type L, class Tag>
inline xtensor_view<EC, N, L, Tag>::xtensor_view(const storage_type& storage)
: base_type()
, m_storage(storage)
{
}
/**
* Constructs an xtensor_view of the given stl-like container,
* with the specified shape and layout_type.
* @param storage the container to adapt
* @param shape the shape of the xtensor_view
* @param l the layout_type of the xtensor_view
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class D>
inline xtensor_view<EC, N, L, Tag>::xtensor_view(D&& storage, const shape_type& shape, layout_type l)
: base_type()
, m_storage(std::forward<D>(storage))
{
base_type::resize(shape, l);
}
/**
* Constructs an xtensor_view of the given stl-like container,
* with the specified shape and strides.
* @param storage the container to adapt
* @param shape the shape of the xtensor_view
* @param strides the strides of the xtensor_view
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class D>
inline xtensor_view<EC, N, L, Tag>::xtensor_view(D&& storage, const shape_type& shape, const strides_type& strides)
: base_type()
, m_storage(std::forward<D>(storage))
{
base_type::resize(shape, strides);
}
//@}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_view<EC, N, L, Tag>::operator=(const xtensor_view& rhs) -> self_type&
{
base_type::operator=(rhs);
m_storage = rhs.m_storage;
return *this;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_view<EC, N, L, Tag>::operator=(xtensor_view&& rhs) -> self_type&
{
base_type::operator=(std::move(rhs));
m_storage = rhs.m_storage;
return *this;
}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended assignment operator.
*/
template <class EC, std::size_t N, layout_type L, class Tag>
template <class E>
inline auto xtensor_view<EC, N, L, Tag>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class EC, std::size_t N, layout_type L, class Tag>
template <class E>
inline auto xtensor_view<EC, N, L, Tag>::operator=(const E& e) -> disable_xexpression<E, self_type>&
{
std::fill(m_storage.begin(), m_storage.end(), e);
return *this;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_view<EC, N, L, Tag>::storage_impl() noexcept -> storage_type&
{
return m_storage;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline auto xtensor_view<EC, N, L, Tag>::storage_impl() const noexcept -> const storage_type&
{
return m_storage;
}
template <class EC, std::size_t N, layout_type L, class Tag>
inline void xtensor_view<EC, N, L, Tag>::assign_temporary_impl(temporary_type&& tmp)
{
std::copy(tmp.cbegin(), tmp.cend(), m_storage.begin());
}
/**
* Converts ``std::vector<index_type>`` (returned e.g. from ``xt::argwhere``) to ``xtensor``.
*
* @param idx vector of indices
*
* @return ``xt::xtensor<typename index_type::value_type, 2>`` (e.g. ``xt::xtensor<size_t, 2>``)
*/
template <class T>
inline auto from_indices(const std::vector<T>& idx)
{
using return_type = xtensor<typename T::value_type, 2>;
using size_type = typename return_type::size_type;
if (idx.size() == 0)
{
return return_type::from_shape({size_type(0), size_type(0)});
}
return_type out = return_type::from_shape({idx.size(), idx[0].size()});
for (size_type i = 0; i < out.shape()[0]; ++i)
{
for (size_type j = 0; j < out.shape()[1]; ++j)
{
out(i, j) = idx[i][j];
}
}
return out;
}
/**
* Converts ``std::vector<index_type>`` (returned e.g. from ``xt::argwhere``) to a flattened
* ``xtensor``.
*
* @param idx a vector of indices
*
* @return ``xt::xtensor<typename index_type::value_type, 1>`` (e.g. ``xt::xtensor<size_t, 1>``)
*/
template <class T>
inline auto flatten_indices(const std::vector<T>& idx)
{
auto n = idx.size();
if (n != 0)
{
n *= idx[0].size();
}
using return_type = xtensor<typename T::value_type, 1>;
return_type out = return_type::from_shape({n});
auto iter = out.begin();
for_each(
idx.begin(),
idx.end(),
[&iter](const auto& t)
{
iter = std::copy(t.cbegin(), t.cend(), iter);
}
);
return out;
}
struct ravel_vector_tag;
struct ravel_tensor_tag;
namespace detail
{
template <class C, class Tag>
struct ravel_return_type;
template <class C>
struct ravel_return_type<C, ravel_vector_tag>
{
using index_type = typename C::value_type;
using value_type = typename index_type::value_type;
using type = std::vector<value_type>;
template <class T>
static std::vector<value_type> init(T n)
{
return std::vector<value_type>(n);
}
};
template <class C>
struct ravel_return_type<C, ravel_tensor_tag>
{
using index_type = typename C::value_type;
using value_type = typename index_type::value_type;
using type = xt::xtensor<value_type, 1>;
template <class T>
static xt::xtensor<value_type, 1> init(T n)
{
return xtensor<value_type, 1>::from_shape({n});
}
};
}
template <class C, class Tag>
using ravel_return_type_t = typename detail::ravel_return_type<C, Tag>::type;
/**
* Converts ``std::vector<index_type>`` (returned e.g. from ``xt::argwhere``) to ``xtensor``
* whereby the indices are ravelled. For 1-d input there is no conversion.
*
* @param idx vector of indices
* @param shape the shape of the original array
* @param l the layout type (row-major or column-major)
*
* @return ``xt::xtensor<typename index_type::value_type, 1>`` (e.g. ``xt::xtensor<size_t, 1>``)
*/
template <class Tag = ravel_tensor_tag, class C, class S>
ravel_return_type_t<C, Tag>
ravel_indices(const C& idx, const S& shape, layout_type l = layout_type::row_major)
{
using return_type = typename detail::ravel_return_type<C, Tag>::type;
using value_type = typename detail::ravel_return_type<C, Tag>::value_type;
using strides_type = get_strides_t<S>;
strides_type strides = xtl::make_sequence<strides_type>(shape.size(), 0);
compute_strides(shape, l, strides);
return_type out = detail::ravel_return_type<C, Tag>::init(idx.size());
auto out_iter = out.begin();
auto idx_iter = idx.begin();
for (; out_iter != out.end(); ++out_iter, ++idx_iter)
{
*out_iter = element_offset<value_type>(strides, (*idx_iter).cbegin(), (*idx_iter).cend());
}
return out;
}
}
#endif