Anurag Bhat 86b4fc623c
Merge numpy to pocketpy (#303)
* Merge numpy to pocketpy

* Add CI

* Fix CI
2024-09-02 16:22:41 +08:00

2318 lines
82 KiB
C++

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef XTENSOR_VIEW_HPP
#define XTENSOR_VIEW_HPP
#include <algorithm>
#include <array>
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
#include <xtl/xclosure.hpp>
#include <xtl/xmeta_utils.hpp>
#include <xtl/xsequence.hpp>
#include <xtl/xtype_traits.hpp>
#include "xaccessible.hpp"
#include "xarray.hpp"
#include "xbroadcast.hpp"
#include "xcontainer.hpp"
#include "xiterable.hpp"
#include "xsemantic.hpp"
#include "xslice.hpp"
#include "xtensor.hpp"
#include "xtensor_config.hpp"
#include "xtensor_forward.hpp"
#include "xview_utils.hpp"
namespace xt
{
/*******************
* xview extension *
*******************/
namespace extension
{
template <class Tag, class CT, class... S>
struct xview_base_impl;
template <class CT, class... S>
struct xview_base_impl<xtensor_expression_tag, CT, S...>
{
using type = xtensor_empty_base;
};
template <class CT, class... S>
struct xview_base : xview_base_impl<xexpression_tag_t<CT>, CT, S...>
{
};
template <class CT, class... S>
using xview_base_t = typename xview_base<CT, S...>::type;
}
/*********************
* xview declaration *
*********************/
template <bool is_const, class CT, class... S>
class xview_stepper;
template <class ST, class... S>
struct xview_shape_type;
namespace detail
{
template <class T>
struct is_xrange : std::false_type
{
};
template <class T>
struct is_xrange<xrange<T>> : std::true_type
{
};
template <class S>
struct is_xall_slice : std::false_type
{
};
template <class T>
struct is_xall_slice<xall<T>> : std::true_type
{
};
template <layout_type L, bool valid, bool all_seen, bool range_seen, class V>
struct is_contiguous_view_impl
{
static constexpr bool value = false;
};
template <class T>
struct static_dimension
{
static constexpr std::ptrdiff_t value = -1;
};
template <class T, std::size_t N>
struct static_dimension<std::array<T, N>>
{
static constexpr std::ptrdiff_t value = static_cast<std::ptrdiff_t>(N);
};
template <class T, std::size_t N>
struct static_dimension<xt::const_array<T, N>>
{
static constexpr std::ptrdiff_t value = static_cast<std::ptrdiff_t>(N);
};
template <std::size_t... I>
struct static_dimension<xt::fixed_shape<I...>>
{
static constexpr std::ptrdiff_t value = sizeof...(I);
};
// if we have the same number of integers as we have static dimensions
// this can be interpreted like a xscalar
template <class CT, class... S>
struct is_xscalar_impl<xview<CT, S...>>
{
static constexpr bool value = static_cast<std::ptrdiff_t>(integral_count<S...>()
) == static_dimension<typename std::decay_t<CT>::shape_type>::value
? true
: false;
};
template <class S>
struct is_strided_slice_impl : std::true_type
{
};
template <class T>
struct is_strided_slice_impl<xkeep_slice<T>> : std::false_type
{
};
template <class T>
struct is_strided_slice_impl<xdrop_slice<T>> : std::false_type
{
};
// If we have no discontiguous slices, we can calculate strides for this view.
template <class E, class... S>
struct is_strided_view
: std::integral_constant<
bool,
xtl::conjunction<has_data_interface<E>, is_strided_slice_impl<std::decay_t<S>>...>::value>
{
};
// if row major the view can only be (statically) computed as contiguous if:
// any number of integers is followed by either one or no range which
// are followed by explicit (or implicit) all's
//
// e.g.
// (i, j, all(), all()) == contiguous
// (i, range(0, 2), all()) == contiguous
// (i) == contiguous (implicit all slices)
// (i, all(), j) == *not* contiguous
// (i, range(0, 2), range(0, 2)) == *not* contiguous etc.
template <bool valid, bool all_seen, bool range_seen, class V>
struct is_contiguous_view_impl<layout_type::row_major, valid, all_seen, range_seen, V>
{
using slice = xtl::mpl::front_t<V>;
static constexpr bool is_range_slice = is_xrange<slice>::value;
static constexpr bool is_int_slice = xtl::is_integral<slice>::value;
static constexpr bool is_all_slice = is_xall_slice<slice>::value;
static constexpr bool have_all_seen = all_seen || is_all_slice;
static constexpr bool have_range_seen = is_range_slice;
static constexpr bool is_valid = valid
&& (have_all_seen
? is_all_slice
: (!range_seen && (is_int_slice || is_range_slice)));
static constexpr bool value = is_contiguous_view_impl < layout_type::row_major, is_valid,
have_all_seen, range_seen || is_range_slice,
xtl::mpl::pop_front_t < V >> ::value;
};
template <bool valid, bool all_seen, bool range_seen>
struct is_contiguous_view_impl<layout_type::row_major, valid, all_seen, range_seen, xtl::mpl::vector<>>
{
static constexpr bool value = valid;
};
// For column major the *same* but reverse is true -- with the additional
// constraint that we have to know the dimension at compile time otherwise
// we cannot make the decision as there might be implicit all's following.
template <bool valid, bool int_seen, bool range_seen, class V>
struct is_contiguous_view_impl<layout_type::column_major, valid, int_seen, range_seen, V>
{
using slice = xtl::mpl::front_t<V>;
static constexpr bool is_range_slice = is_xrange<slice>::value;
static constexpr bool is_int_slice = xtl::is_integral<slice>::value;
static constexpr bool is_all_slice = is_xall_slice<slice>::value;
static constexpr bool have_int_seen = int_seen || is_int_slice;
static constexpr bool is_valid = valid
&& (have_int_seen
? is_int_slice
: (!range_seen && (is_all_slice || is_range_slice)));
static constexpr bool value = is_contiguous_view_impl < layout_type::column_major, is_valid,
have_int_seen, is_range_slice || range_seen,
xtl::mpl::pop_front_t < V >> ::value;
};
template <bool valid, bool int_seen, bool range_seen>
struct is_contiguous_view_impl<layout_type::column_major, valid, int_seen, range_seen, xtl::mpl::vector<>>
{
static constexpr bool value = valid;
};
// TODO relax has_data_interface constraint here!
template <class E, class... S>
struct is_contiguous_view
: std::integral_constant<
bool,
has_data_interface<E>::value
&& !(
E::static_layout == layout_type::column_major
&& static_cast<std::size_t>(static_dimension<typename E::shape_type>::value) != sizeof...(S)
)
&& is_contiguous_view_impl<E::static_layout, true, false, false, xtl::mpl::vector<S...>>::value>
{
};
template <layout_type L, class T, std::ptrdiff_t offset>
struct unwrap_offset_container
{
using type = void;
};
template <class T, std::ptrdiff_t offset>
struct unwrap_offset_container<layout_type::row_major, T, offset>
{
using type = sequence_view<T, offset, static_dimension<T>::value>;
};
template <class T, std::ptrdiff_t start, std::ptrdiff_t end, std::ptrdiff_t offset>
struct unwrap_offset_container<layout_type::row_major, sequence_view<T, start, end>, offset>
{
using type = sequence_view<T, start + offset, end>;
};
template <class T, std::ptrdiff_t offset>
struct unwrap_offset_container<layout_type::column_major, T, offset>
{
using type = sequence_view<T, 0, static_dimension<T>::value - offset>;
};
template <class T, std::ptrdiff_t start, std::ptrdiff_t end, std::ptrdiff_t offset>
struct unwrap_offset_container<layout_type::column_major, sequence_view<T, start, end>, offset>
{
using type = sequence_view<T, start, end - offset>;
};
template <class E, class... S>
struct get_contigous_shape_type
{
// if we have no `range` in the slices we can re-use the shape with an offset
using type = std::conditional_t<
xtl::disjunction<is_xrange<S>...>::value,
typename xview_shape_type<typename E::shape_type, S...>::type,
// In the false branch we know that we have only integers at the front OR end, and NO range
typename unwrap_offset_container<E::static_layout, typename E::inner_shape_type, integral_count<S...>()>::type>;
};
template <class T>
struct is_sequence_view : std::integral_constant<bool, false>
{
};
template <class T, std::ptrdiff_t S, std::ptrdiff_t E>
struct is_sequence_view<sequence_view<T, S, E>> : std::integral_constant<bool, true>
{
};
}
template <class CT, class... S>
struct xcontainer_inner_types<xview<CT, S...>>
{
using xexpression_type = std::decay_t<CT>;
using reference = inner_reference_t<CT>;
using const_reference = typename xexpression_type::const_reference;
using size_type = typename xexpression_type::size_type;
using temporary_type = view_temporary_type_t<xexpression_type, S...>;
static constexpr layout_type layout = detail::is_contiguous_view<xexpression_type, S...>::value
? xexpression_type::static_layout
: layout_type::dynamic;
static constexpr bool is_const = std::is_const<std::remove_reference_t<CT>>::value;
using extract_storage_type = xtl::mpl::eval_if_t<
has_data_interface<xexpression_type>,
detail::expr_storage_type<xexpression_type>,
make_invalid_type<>>;
using storage_type = std::conditional_t<is_const, const extract_storage_type, extract_storage_type>;
};
template <class CT, class... S>
struct xiterable_inner_types<xview<CT, S...>>
{
using xexpression_type = std::decay_t<CT>;
static constexpr bool is_strided_view = detail::is_strided_view<xexpression_type, S...>::value;
static constexpr bool is_contiguous_view = detail::is_contiguous_view<xexpression_type, S...>::value;
using inner_shape_type = std::conditional_t<
is_contiguous_view,
typename detail::get_contigous_shape_type<xexpression_type, S...>::type,
typename xview_shape_type<typename xexpression_type::shape_type, S...>::type>;
using stepper = std::conditional_t<
is_strided_view,
xstepper<xview<CT, S...>>,
xview_stepper<std::is_const<std::remove_reference_t<CT>>::value, CT, S...>>;
using const_stepper = std::conditional_t<
is_strided_view,
xstepper<const xview<CT, S...>>,
xview_stepper<true, std::remove_cv_t<CT>, S...>>;
};
/**
* @class xview
* @brief Multidimensional view with tensor semantic.
*
* The xview class implements a multidimensional view with tensor
* semantic. It is used to adapt the shape of an xexpression without
* changing it. xview is not meant to be used directly, but
* only with the \ref view helper functions.
*
* @tparam CT the closure type of the \ref xexpression to adapt
* @tparam S the slices type describing the shape adaptation
*
* @sa view, range, all, newaxis, keep, drop
*/
template <class CT, class... S>
class xview : public xview_semantic<xview<CT, S...>>,
public std::conditional_t<
detail::is_contiguous_view<std::decay_t<CT>, S...>::value,
xcontiguous_iterable<xview<CT, S...>>,
xiterable<xview<CT, S...>>>,
public xaccessible<xview<CT, S...>>,
public extension::xview_base_t<CT, S...>
{
public:
using self_type = xview<CT, S...>;
using inner_types = xcontainer_inner_types<self_type>;
using xexpression_type = std::decay_t<CT>;
using semantic_base = xview_semantic<self_type>;
using temporary_type = typename xcontainer_inner_types<self_type>::temporary_type;
using accessible_base = xaccessible<self_type>;
using extension_base = extension::xview_base_t<CT, S...>;
using expression_tag = typename extension_base::expression_tag;
static constexpr bool is_const = std::is_const<std::remove_reference_t<CT>>::value;
using value_type = typename xexpression_type::value_type;
using simd_value_type = xt_simd::simd_type<value_type>;
using bool_load_type = typename xexpression_type::bool_load_type;
using reference = typename inner_types::reference;
using const_reference = typename inner_types::const_reference;
using pointer = std::
conditional_t<is_const, typename xexpression_type::const_pointer, typename xexpression_type::pointer>;
using const_pointer = typename xexpression_type::const_pointer;
using size_type = typename inner_types::size_type;
using difference_type = typename xexpression_type::difference_type;
static constexpr layout_type static_layout = inner_types::layout;
static constexpr bool contiguous_layout = static_layout != layout_type::dynamic;
static constexpr bool is_strided_view = detail::is_strided_view<xexpression_type, S...>::value;
static constexpr bool is_contiguous_view = contiguous_layout;
using iterable_base = xiterable<self_type>;
using inner_shape_type = typename iterable_base::inner_shape_type;
using shape_type = typename xview_shape_type<typename xexpression_type::shape_type, S...>::type;
using xexpression_inner_strides_type = xtl::mpl::eval_if_t<
has_strides<xexpression_type>,
detail::expr_inner_strides_type<xexpression_type>,
get_strides_type<shape_type>>;
using xexpression_inner_backstrides_type = xtl::mpl::eval_if_t<
has_strides<xexpression_type>,
detail::expr_inner_backstrides_type<xexpression_type>,
get_strides_type<shape_type>>;
using storage_type = typename inner_types::storage_type;
static constexpr bool has_trivial_strides = is_contiguous_view
&& !xtl::disjunction<detail::is_xrange<S>...>::value;
using inner_strides_type = std::conditional_t<
has_trivial_strides,
typename detail::unwrap_offset_container<
xexpression_type::static_layout,
xexpression_inner_strides_type,
integral_count<S...>()>::type,
get_strides_t<shape_type>>;
using inner_backstrides_type = std::conditional_t<
has_trivial_strides,
typename detail::unwrap_offset_container<
xexpression_type::static_layout,
xexpression_inner_backstrides_type,
integral_count<S...>()>::type,
get_strides_t<shape_type>>;
using strides_type = get_strides_t<shape_type>;
using backstrides_type = strides_type;
using slice_type = std::tuple<S...>;
using stepper = typename iterable_base::stepper;
using const_stepper = typename iterable_base::const_stepper;
using linear_iterator = std::conditional_t<
has_data_interface<xexpression_type>::value && is_strided_view,
std::conditional_t<is_const, typename xexpression_type::const_linear_iterator, typename xexpression_type::linear_iterator>,
typename iterable_base::linear_iterator>;
using const_linear_iterator = std::conditional_t<
has_data_interface<xexpression_type>::value && is_strided_view,
typename xexpression_type::const_linear_iterator,
typename iterable_base::const_linear_iterator>;
using reverse_linear_iterator = std::reverse_iterator<linear_iterator>;
using const_reverse_linear_iterator = std::reverse_iterator<const_linear_iterator>;
using container_iterator = pointer;
using const_container_iterator = const_pointer;
static constexpr std::size_t rank = SIZE_MAX;
// The FSL argument prevents the compiler from calling this constructor
// instead of the copy constructor when sizeof...(SL) == 0.
template <class CTA, class FSL, class... SL>
explicit xview(CTA&& e, FSL&& first_slice, SL&&... slices) noexcept;
xview(const xview&) = default;
self_type& operator=(const xview& rhs);
template <class E>
self_type& operator=(const xexpression<E>& e);
template <class E>
disable_xexpression<E, self_type>& operator=(const E& e);
const inner_shape_type& shape() const noexcept;
const slice_type& slices() const noexcept;
layout_type layout() const noexcept;
bool is_contiguous() const noexcept;
using accessible_base::shape;
template <class T>
void fill(const T& value);
template <class... Args>
reference operator()(Args... args);
template <class... Args>
reference unchecked(Args... args);
template <class It>
reference element(It first, It last);
template <class... Args>
const_reference operator()(Args... args) const;
template <class... Args>
const_reference unchecked(Args... args) const;
template <class It>
const_reference element(It first, It last) const;
xexpression_type& expression() noexcept;
const xexpression_type& expression() const noexcept;
template <class ST>
bool broadcast_shape(ST& shape, bool reuse_cache = false) const;
template <class ST>
bool has_linear_assign(const ST& strides) const;
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<!Enable, stepper> stepper_begin(const ST& shape);
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<!Enable, stepper> stepper_end(const ST& shape, layout_type l);
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<!Enable, const_stepper> stepper_begin(const ST& shape) const;
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<!Enable, const_stepper> stepper_end(const ST& shape, layout_type l) const;
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<Enable, stepper> stepper_begin(const ST& shape);
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<Enable, stepper> stepper_end(const ST& shape, layout_type l);
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<Enable, const_stepper> stepper_begin(const ST& shape) const;
template <class ST, bool Enable = is_strided_view>
std::enable_if_t<Enable, const_stepper> stepper_end(const ST& shape, layout_type l) const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value, storage_type&> storage();
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value, const storage_type&> storage() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, linear_iterator> linear_begin();
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, linear_iterator> linear_end();
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
linear_begin() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
linear_end() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
linear_cbegin() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
linear_cend() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, reverse_linear_iterator>
linear_rbegin();
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, reverse_linear_iterator>
linear_rend();
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
linear_rbegin() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
linear_rend() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
linear_crbegin() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
linear_crend() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const inner_strides_type&>
strides() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const inner_strides_type&>
backstrides() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_pointer> data() const;
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, pointer> data();
template <class T = xexpression_type>
std::enable_if_t<has_data_interface<T>::value && is_strided_view, std::size_t>
data_offset() const noexcept;
template <class It>
inline It data_xbegin_impl(It begin) const noexcept;
template <class It>
inline It data_xend_impl(It begin, layout_type l, size_type offset) const noexcept;
inline container_iterator data_xbegin() noexcept;
inline const_container_iterator data_xbegin() const noexcept;
inline container_iterator data_xend(layout_type l, size_type offset) noexcept;
inline const_container_iterator data_xend(layout_type l, size_type offset) const noexcept;
// Conversion operator enabled for statically "scalar" views
template <class ST = self_type, class = std::enable_if_t<is_xscalar<std::decay_t<ST>>::value, int>>
operator reference()
{
return (*this)();
}
template <class ST = self_type, class = std::enable_if_t<is_xscalar<std::decay_t<ST>>::value, int>>
operator const_reference() const
{
return (*this)();
}
size_type underlying_size(size_type dim) const;
xtl::xclosure_pointer<self_type&> operator&() &;
xtl::xclosure_pointer<const self_type&> operator&() const&;
xtl::xclosure_pointer<self_type> operator&() &&;
template <
class E,
class T = xexpression_type,
class = std::enable_if_t<has_data_interface<T>::value && is_contiguous_view, int>>
void assign_to(xexpression<E>& e, bool force_resize) const;
template <class E>
using rebind_t = xview<E, S...>;
template <class E>
rebind_t<E> build_view(E&& e) const;
//
// SIMD interface
//
template <class requested_type>
using simd_return_type = xt_simd::simd_return_type<value_type, requested_type>;
template <class T, class R>
using enable_simd_interface = std::enable_if_t<has_simd_interface<T>::value && is_strided_view, R>;
template <class align, class simd, class T = xexpression_type>
enable_simd_interface<T, void> store_simd(size_type i, const simd& e);
template <
class align,
class requested_type = value_type,
std::size_t N = xt_simd::simd_traits<requested_type>::size,
class T = xexpression_type>
enable_simd_interface<T, simd_return_type<requested_type>> load_simd(size_type i) const;
template <class T = xexpression_type>
enable_simd_interface<T, reference> data_element(size_type i);
template <class T = xexpression_type>
enable_simd_interface<T, const_reference> data_element(size_type i) const;
template <class T = xexpression_type>
enable_simd_interface<T, reference> flat(size_type i);
template <class T = xexpression_type>
enable_simd_interface<T, const_reference> flat(size_type i) const;
private:
// VS 2015 workaround (yes, really)
template <std::size_t I>
struct lesser_condition
{
static constexpr bool value = (I + newaxis_count_before<S...>(I + 1) < sizeof...(S));
};
CT m_e;
slice_type m_slices;
inner_shape_type m_shape;
mutable inner_strides_type m_strides;
mutable inner_backstrides_type m_backstrides;
mutable std::size_t m_data_offset;
mutable bool m_strides_computed;
template <class CTA, class FSL, class... SL>
explicit xview(std::true_type, CTA&& e, FSL&& first_slice, SL&&... slices) noexcept;
template <class CTA, class FSL, class... SL>
explicit xview(std::false_type, CTA&& e, FSL&& first_slice, SL&&... slices) noexcept;
template <class... Args>
auto make_index_sequence(Args... args) const noexcept;
void compute_strides(std::true_type) const;
void compute_strides(std::false_type) const;
reference access();
template <class Arg, class... Args>
reference access(Arg arg, Args... args);
const_reference access() const;
template <class Arg, class... Args>
const_reference access(Arg arg, Args... args) const;
template <typename std::decay_t<CT>::size_type... I, class... Args>
reference unchecked_impl(std::index_sequence<I...>, Args... args);
template <typename std::decay_t<CT>::size_type... I, class... Args>
const_reference unchecked_impl(std::index_sequence<I...>, Args... args) const;
template <typename std::decay_t<CT>::size_type... I, class... Args>
reference access_impl(std::index_sequence<I...>, Args... args);
template <typename std::decay_t<CT>::size_type... I, class... Args>
const_reference access_impl(std::index_sequence<I...>, Args... args) const;
template <typename std::decay_t<CT>::size_type I, class... Args>
std::enable_if_t<lesser_condition<I>::value, size_type> index(Args... args) const;
template <typename std::decay_t<CT>::size_type I, class... Args>
std::enable_if_t<!lesser_condition<I>::value, size_type> index(Args... args) const;
template <typename std::decay_t<CT>::size_type, class T>
size_type sliced_access(const xslice<T>& slice) const;
template <typename std::decay_t<CT>::size_type I, class T, class Arg, class... Args>
size_type sliced_access(const xslice<T>& slice, Arg arg, Args... args) const;
template <typename std::decay_t<CT>::size_type I, class T, class... Args>
disable_xslice<T, size_type> sliced_access(const T& squeeze, Args...) const;
using base_index_type = xindex_type_t<typename xexpression_type::shape_type>;
template <class It>
base_index_type make_index(It first, It last) const;
void assign_temporary_impl(temporary_type&& tmp);
template <std::size_t... I>
std::size_t data_offset_impl(std::index_sequence<I...>) const noexcept;
template <std::size_t... I>
auto compute_strides_impl(std::index_sequence<I...>) const noexcept;
inner_shape_type compute_shape(std::true_type) const;
inner_shape_type compute_shape(std::false_type) const;
template <class E, std::size_t... I>
rebind_t<E> build_view_impl(E&& e, std::index_sequence<I...>) const;
friend class xview_semantic<xview<CT, S...>>;
};
template <class E, class... S>
auto view(E&& e, S&&... slices);
template <class E>
auto row(E&& e, std::ptrdiff_t index);
template <class E>
auto col(E&& e, std::ptrdiff_t index);
/*****************************
* xview_stepper declaration *
*****************************/
namespace detail
{
template <class V>
struct get_stepper_impl
{
using xexpression_type = typename V::xexpression_type;
using type = typename xexpression_type::stepper;
};
template <class V>
struct get_stepper_impl<const V>
{
using xexpression_type = typename V::xexpression_type;
using type = typename xexpression_type::const_stepper;
};
}
template <class V>
using get_stepper = typename detail::get_stepper_impl<V>::type;
template <bool is_const, class CT, class... S>
class xview_stepper
{
public:
using view_type = std::conditional_t<is_const, const xview<CT, S...>, xview<CT, S...>>;
using substepper_type = get_stepper<view_type>;
using value_type = typename substepper_type::value_type;
using reference = typename substepper_type::reference;
using pointer = typename substepper_type::pointer;
using difference_type = typename substepper_type::difference_type;
using size_type = typename view_type::size_type;
using shape_type = typename substepper_type::shape_type;
xview_stepper() = default;
xview_stepper(
view_type* view,
substepper_type it,
size_type offset,
bool end = false,
layout_type l = XTENSOR_DEFAULT_TRAVERSAL
);
reference operator*() const;
void step(size_type dim);
void step_back(size_type dim);
void step(size_type dim, size_type n);
void step_back(size_type dim, size_type n);
void reset(size_type dim);
void reset_back(size_type dim);
void to_begin();
void to_end(layout_type l);
private:
bool is_newaxis_slice(size_type index) const noexcept;
void to_end_impl(layout_type l);
template <class F>
void common_step_forward(size_type dim, F f);
template <class F>
void common_step_backward(size_type dim, F f);
template <class F>
void common_step_forward(size_type dim, size_type n, F f);
template <class F>
void common_step_backward(size_type dim, size_type n, F f);
template <class F>
void common_reset(size_type dim, F f, bool backwards);
view_type* p_view;
substepper_type m_it;
size_type m_offset;
std::array<std::size_t, sizeof...(S)> m_index_keeper;
};
// meta-function returning the shape type for an xview
template <class ST, class... S>
struct xview_shape_type
{
using type = ST;
};
template <class I, std::size_t L, class... S>
struct xview_shape_type<std::array<I, L>, S...>
{
using type = std::array<I, L - integral_count<S...>() + newaxis_count<S...>()>;
};
template <std::size_t... I, class... S>
struct xview_shape_type<fixed_shape<I...>, S...>
{
using type = typename xview_shape_type<std::array<std::size_t, sizeof...(I)>, S...>::type;
};
/************************
* xview implementation *
************************/
/**
* @name Constructor
*/
//@{
/**
* Constructs a view on the specified xexpression.
* Users should not call directly this constructor but
* use the view function instead.
* @param e the xexpression to adapt
* @param first_slice the first slice describing the view
* @param slices the slices list describing the view
* @sa view
*/
template <class CT, class... S>
template <class CTA, class FSL, class... SL>
xview<CT, S...>::xview(CTA&& e, FSL&& first_slice, SL&&... slices) noexcept
: xview(
std::integral_constant<bool, has_trivial_strides>{},
std::forward<CTA>(e),
std::forward<FSL>(first_slice),
std::forward<SL>(slices)...
)
{
}
// trivial strides initializer
template <class CT, class... S>
template <class CTA, class FSL, class... SL>
xview<CT, S...>::xview(std::true_type, CTA&& e, FSL&& first_slice, SL&&... slices) noexcept
: m_e(std::forward<CTA>(e))
, m_slices(std::forward<FSL>(first_slice), std::forward<SL>(slices)...)
, m_shape(compute_shape(detail::is_sequence_view<inner_shape_type>{}))
, m_strides(m_e.strides())
, m_backstrides(m_e.backstrides())
, m_data_offset(data_offset_impl(std::make_index_sequence<sizeof...(S)>()))
, m_strides_computed(true)
{
}
template <class CT, class... S>
template <class CTA, class FSL, class... SL>
xview<CT, S...>::xview(std::false_type, CTA&& e, FSL&& first_slice, SL&&... slices) noexcept
: m_e(std::forward<CTA>(e))
, m_slices(std::forward<FSL>(first_slice), std::forward<SL>(slices)...)
, m_shape(compute_shape(std::false_type{}))
, m_strides_computed(false)
{
}
//@}
template <class CT, class... S>
inline auto xview<CT, S...>::operator=(const xview& rhs) -> self_type&
{
temporary_type tmp(rhs);
return this->assign_temporary(std::move(tmp));
}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended assignment operator.
*/
template <class CT, class... S>
template <class E>
inline auto xview<CT, S...>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class CT, class... S>
template <class E>
inline auto xview<CT, S...>::operator=(const E& e) -> disable_xexpression<E, self_type>&
{
this->fill(e);
return *this;
}
/**
* @name Size and shape
*/
//@{
/**
* Returns the shape of the view.
*/
template <class CT, class... S>
inline auto xview<CT, S...>::shape() const noexcept -> const inner_shape_type&
{
return m_shape;
}
/**
* Returns the slices of the view.
*/
template <class CT, class... S>
inline auto xview<CT, S...>::slices() const noexcept -> const slice_type&
{
return m_slices;
}
/**
* Returns the slices of the view.
*/
template <class CT, class... S>
inline layout_type xview<CT, S...>::layout() const noexcept
{
return xtl::mpl::static_if<is_strided_view>(
[&](auto self)
{
if (static_layout != layout_type::dynamic)
{
return static_layout;
}
else
{
bool strides_match = do_strides_match(
self(this)->shape(),
self(this)->strides(),
self(this)->m_e.layout(),
true
);
return strides_match ? self(this)->m_e.layout() : layout_type::dynamic;
}
},
/* else */
[&](auto /*self*/)
{
return layout_type::dynamic;
}
);
}
template <class CT, class... S>
inline bool xview<CT, S...>::is_contiguous() const noexcept
{
return layout() != layout_type::dynamic;
}
//@}
/**
* @name Data
*/
//@{
/**
* Fills the view with the given value.
* @param value the value to fill the view with.
*/
template <class CT, class... S>
template <class T>
inline void xview<CT, S...>::fill(const T& value)
{
xtl::mpl::static_if<static_layout != layout_type::dynamic>(
[&](auto self)
{
std::fill(self(this)->linear_begin(), self(this)->linear_end(), value);
},
/*else*/
[&](auto self)
{
std::fill(self(this)->begin(), self(this)->end(), value);
}
);
}
/**
* Returns a reference to the element at the specified position in the view.
* @param args a list of indices specifying the position in the view. Indices
* must be unsigned integers, the number of indices should be equal or greater
* than the number of dimensions of the view.
*/
template <class CT, class... S>
template <class... Args>
inline auto xview<CT, S...>::operator()(Args... args) -> reference
{
XTENSOR_TRY(check_index(shape(), args...));
XTENSOR_CHECK_DIMENSION(shape(), args...);
// The static cast prevents the compiler from instantiating the template methods with signed integers,
// leading to warning about signed/unsigned conversions in the deeper layers of the access methods
return access(static_cast<size_type>(args)...);
}
/**
* Returns a reference to the element at the specified position in the view.
* @param args a list of indices specifying the position in the view. Indices
* must be unsigned integers, the number of indices must be equal to the number of
* dimensions of the view, else the behavior is undefined.
*
* @warning This method is meant for performance, for expressions with a dynamic
* number of dimensions (i.e. not known at compile time). Since it may have
* undefined behavior (see parameters), operator() should be preferred whenever
* it is possible.
* @warning This method is NOT compatible with broadcasting, meaning the following
* code has undefined behavior:
* @code{.cpp}
* xt::xarray<double> a = {{0, 1}, {2, 3}};
* xt::xarray<double> b = {0, 1};
* auto fd = a + b;
* double res = fd.unchecked(0, 1);
* @endcode
*/
template <class CT, class... S>
template <class... Args>
inline auto xview<CT, S...>::unchecked(Args... args) -> reference
{
return unchecked_impl(make_index_sequence(args...), static_cast<size_type>(args)...);
}
template <class CT, class... S>
template <class It>
inline auto xview<CT, S...>::element(It first, It last) -> reference
{
XTENSOR_TRY(check_element_index(shape(), first, last));
// TODO: avoid memory allocation
auto index = make_index(first, last);
return m_e.element(index.cbegin(), index.cend());
}
/**
* Returns a constant reference to the element at the specified position in the view.
* @param args a list of indices specifying the position in the view. Indices must be
* unsigned integers, the number of indices should be equal or greater than the number
* of dimensions of the view.
*/
template <class CT, class... S>
template <class... Args>
inline auto xview<CT, S...>::operator()(Args... args) const -> const_reference
{
XTENSOR_TRY(check_index(shape(), args...));
XTENSOR_CHECK_DIMENSION(shape(), args...);
// The static cast prevents the compiler from instantiating the template methods with signed integers,
// leading to warning about signed/unsigned conversions in the deeper layers of the access methods
return access(static_cast<size_type>(args)...);
}
/**
* Returns a constant reference to the element at the specified position in the view.
* @param args a list of indices specifying the position in the view. Indices
* must be unsigned integers, the number of indices must be equal to the number of
* dimensions of the view, else the behavior is undefined.
*
* @warning This method is meant for performance, for expressions with a dynamic
* number of dimensions (i.e. not known at compile time). Since it may have
* undefined behavior (see parameters), operator() should be preferred whenever
* it is possible.
* @warning This method is NOT compatible with broadcasting, meaning the following
* code has undefined behavior:
* @code{.cpp}
* xt::xarray<double> a = {{0, 1}, {2, 3}};
* xt::xarray<double> b = {0, 1};
* auto fd = a + b;
* double res = fd.unchecked(0, 1);
* @endcode
*/
template <class CT, class... S>
template <class... Args>
inline auto xview<CT, S...>::unchecked(Args... args) const -> const_reference
{
return unchecked_impl(make_index_sequence(args...), static_cast<size_type>(args)...);
}
template <class CT, class... S>
template <class It>
inline auto xview<CT, S...>::element(It first, It last) const -> const_reference
{
// TODO: avoid memory allocation
auto index = make_index(first, last);
return m_e.element(index.cbegin(), index.cend());
}
/**
* Returns a reference to the underlying expression of the view.
*/
template <class CT, class... S>
inline auto xview<CT, S...>::expression() noexcept -> xexpression_type&
{
return m_e;
}
/**
* Returns a const reference to the underlying expression of the view.
*/
template <class CT, class... S>
inline auto xview<CT, S...>::expression() const noexcept -> const xexpression_type&
{
return m_e;
}
/**
* Returns the data holder of the underlying container (only if the view is on a realized
* container). ``xt::eval`` will make sure that the underlying xexpression is
* on a realized container.
*/
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::storage() -> std::enable_if_t<has_data_interface<T>::value, storage_type&>
{
return m_e.storage();
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::storage() const
-> std::enable_if_t<has_data_interface<T>::value, const storage_type&>
{
return m_e.storage();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_begin()
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, linear_iterator>
{
return m_e.storage().begin() + data_offset();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_end()
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, linear_iterator>
{
return m_e.storage().begin() + data_offset() + this->size();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_begin() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
{
return linear_cbegin();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_end() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
{
return linear_cend();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_cbegin() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
{
return m_e.storage().cbegin() + data_offset();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_cend() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_linear_iterator>
{
return m_e.storage().cbegin() + data_offset() + this->size();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_rbegin()
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, reverse_linear_iterator>
{
return reverse_linear_iterator(linear_end());
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_rend()
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, reverse_linear_iterator>
{
return reverse_linear_iterator(linear_begin());
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_rbegin() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
{
return linear_crbegin();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_rend() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
{
return linear_crend();
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_crbegin() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
{
return const_reverse_linear_iterator(linear_end());
}
template <class CT, class... S>
template <class T>
auto xview<CT, S...>::linear_crend() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_reverse_linear_iterator>
{
return const_reverse_linear_iterator(linear_begin());
}
/**
* Return the strides for the underlying container of the view.
*/
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::strides() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const inner_strides_type&>
{
if (!m_strides_computed)
{
compute_strides(std::integral_constant<bool, has_trivial_strides>{});
m_strides_computed = true;
}
return m_strides;
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::backstrides() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const inner_strides_type&>
{
if (!m_strides_computed)
{
compute_strides(std::integral_constant<bool, has_trivial_strides>{});
m_strides_computed = true;
}
return m_backstrides;
}
/**
* Return the pointer to the underlying buffer.
*/
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::data() const
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, const_pointer>
{
return m_e.data();
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::data()
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, pointer>
{
return m_e.data();
}
template <class CT, class... S>
template <std::size_t... I>
inline std::size_t xview<CT, S...>::data_offset_impl(std::index_sequence<I...>) const noexcept
{
auto temp = std::array<std::ptrdiff_t, sizeof...(S)>(
{(static_cast<ptrdiff_t>(xt::value(std::get<I>(m_slices), 0)))...}
);
std::ptrdiff_t result = 0;
std::size_t i = 0;
for (; i < std::min(sizeof...(S), m_e.strides().size()); ++i)
{
result += temp[i] * m_e.strides()[i - newaxis_count_before<S...>(i)];
}
for (; i < sizeof...(S); ++i)
{
result += temp[i];
}
return static_cast<std::size_t>(result) + m_e.data_offset();
}
/**
* Return the offset to the first element of the view in the underlying container.
*/
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::data_offset() const noexcept
-> std::enable_if_t<has_data_interface<T>::value && is_strided_view, std::size_t>
{
if (!m_strides_computed)
{
compute_strides(std::integral_constant<bool, has_trivial_strides>{});
m_strides_computed = true;
}
return m_data_offset;
}
//@}
template <class CT, class... S>
inline auto xview<CT, S...>::underlying_size(size_type dim) const -> size_type
{
return m_e.shape()[dim];
}
template <class CT, class... S>
inline auto xview<CT, S...>::operator&() & -> xtl::xclosure_pointer<self_type&>
{
return xtl::closure_pointer(*this);
}
template <class CT, class... S>
inline auto xview<CT, S...>::operator&() const& -> xtl::xclosure_pointer<const self_type&>
{
return xtl::closure_pointer(*this);
}
template <class CT, class... S>
inline auto xview<CT, S...>::operator&() && -> xtl::xclosure_pointer<self_type>
{
return xtl::closure_pointer(std::move(*this));
}
/**
* @name Broadcasting
*/
//@{
/**
* Broadcast the shape of the view to the specified parameter.
* @param shape the result shape
* @param reuse_cache parameter for internal optimization
* @return a boolean indicating whether the broadcasting is trivial
*/
template <class CT, class... S>
template <class ST>
inline bool xview<CT, S...>::broadcast_shape(ST& shape, bool) const
{
return xt::broadcast_shape(m_shape, shape);
}
/**
* Checks whether the xview can be linearly assigned to an expression
* with the specified strides.
* @return a boolean indicating whether a linear assign is possible
*/
template <class CT, class... S>
template <class ST>
inline bool xview<CT, S...>::has_linear_assign(const ST& str) const
{
return xtl::mpl::static_if<is_strided_view>(
[&](auto self)
{
return str.size() == self(this)->strides().size()
&& std::equal(str.cbegin(), str.cend(), self(this)->strides().begin());
},
/*else*/
[](auto /*self*/)
{
return false;
}
);
}
//@}
template <class CT, class... S>
template <class It>
inline It xview<CT, S...>::data_xbegin_impl(It begin) const noexcept
{
return begin + data_offset();
}
template <class CT, class... S>
template <class It>
inline It xview<CT, S...>::data_xend_impl(It begin, layout_type l, size_type offset) const noexcept
{
return strided_data_end(*this, begin, l, offset);
}
template <class CT, class... S>
inline auto xview<CT, S...>::data_xbegin() noexcept -> container_iterator
{
return data_xbegin_impl(data());
}
template <class CT, class... S>
inline auto xview<CT, S...>::data_xbegin() const noexcept -> const_container_iterator
{
return data_xbegin_impl(data());
}
template <class CT, class... S>
inline auto xview<CT, S...>::data_xend(layout_type l, size_type offset) noexcept -> container_iterator
{
return data_xend_impl(data() + data_offset(), l, offset);
}
template <class CT, class... S>
inline auto xview<CT, S...>::data_xend(layout_type l, size_type offset) const noexcept
-> const_container_iterator
{
return data_xend_impl(data() + data_offset(), l, offset);
}
// Assign to operator enabled for contigous views
template <class CT, class... S>
template <class E, class T, class>
void xview<CT, S...>::assign_to(xexpression<E>& e, bool force_resize) const
{
auto& de = e.derived_cast();
de.resize(shape(), force_resize);
std::copy(data() + data_offset(), data() + data_offset() + de.size(), de.template begin<static_layout>());
}
template <class CT, class... S>
template <class E, std::size_t... I>
inline auto xview<CT, S...>::build_view_impl(E&& e, std::index_sequence<I...>) const -> rebind_t<E>
{
return rebind_t<E>(std::forward<E>(e), std::get<I>(m_slices)...);
}
template <class CT, class... S>
template <class E>
inline auto xview<CT, S...>::build_view(E&& e) const -> rebind_t<E>
{
return build_view_impl(std::forward<E>(e), std::make_index_sequence<sizeof...(S)>());
}
template <class CT, class... S>
template <class align, class simd, class T>
inline auto xview<CT, S...>::store_simd(size_type i, const simd& e) -> enable_simd_interface<T, void>
{
return m_e.template store_simd<xt_simd::unaligned_mode>(data_offset() + i, e);
}
template <class CT, class... S>
template <class align, class requested_type, std::size_t N, class T>
inline auto xview<CT, S...>::load_simd(size_type i) const
-> enable_simd_interface<T, simd_return_type<requested_type>>
{
return m_e.template load_simd<xt_simd::unaligned_mode, requested_type>(data_offset() + i);
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::data_element(size_type i) -> enable_simd_interface<T, reference>
{
return m_e.data_element(data_offset() + i);
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::data_element(size_type i) const -> enable_simd_interface<T, const_reference>
{
return m_e.data_element(data_offset() + i);
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::flat(size_type i) -> enable_simd_interface<T, reference>
{
XTENSOR_ASSERT(is_contiguous());
return m_e.flat(data_offset() + i);
}
template <class CT, class... S>
template <class T>
inline auto xview<CT, S...>::flat(size_type i) const -> enable_simd_interface<T, const_reference>
{
XTENSOR_ASSERT(is_contiguous());
return m_e.flat(data_offset() + i);
}
template <class CT, class... S>
template <class... Args>
inline auto xview<CT, S...>::make_index_sequence(Args...) const noexcept
{
return std::make_index_sequence<
(sizeof...(Args) + integral_count<S...>() > newaxis_count<S...>()
? sizeof...(Args) + integral_count<S...>() - newaxis_count<S...>()
: 0)>();
}
template <class CT, class... S>
template <std::size_t... I>
inline auto xview<CT, S...>::compute_strides_impl(std::index_sequence<I...>) const noexcept
{
std::size_t original_dim = m_e.dimension();
return std::array<std::ptrdiff_t, sizeof...(I)>(
{(static_cast<std::ptrdiff_t>(xt::step_size(std::get<integral_skip<S...>(I)>(m_slices), 1))
* ((integral_skip<S...>(I) - newaxis_count_before<S...>(integral_skip<S...>(I))) < original_dim
? m_e.strides()[integral_skip<S...>(I) - newaxis_count_before<S...>(integral_skip<S...>(I))]
: 1))...}
);
}
template <class CT, class... S>
inline void xview<CT, S...>::compute_strides(std::false_type) const
{
m_strides = xtl::make_sequence<inner_strides_type>(this->dimension(), 0);
m_backstrides = xtl::make_sequence<inner_strides_type>(this->dimension(), 0);
constexpr std::size_t n_strides = sizeof...(S) - integral_count<S...>();
auto slice_strides = compute_strides_impl(std::make_index_sequence<n_strides>());
for (std::size_t i = 0; i < n_strides; ++i)
{
m_strides[i] = slice_strides[i];
// adapt strides for shape[i] == 1 to make consistent with rest of xtensor
detail::adapt_strides(shape(), m_strides, &m_backstrides, i);
}
for (std::size_t i = n_strides; i < this->dimension(); ++i)
{
m_strides[i] = m_e.strides()[i + integral_count<S...>() - newaxis_count<S...>()];
detail::adapt_strides(shape(), m_strides, &m_backstrides, i);
}
m_data_offset = data_offset_impl(std::make_index_sequence<sizeof...(S)>());
}
template <class CT, class... S>
inline void xview<CT, S...>::compute_strides(std::true_type) const
{
}
template <class CT, class... S>
inline auto xview<CT, S...>::access() -> reference
{
return access_impl(make_index_sequence());
}
template <class CT, class... S>
template <class Arg, class... Args>
inline auto xview<CT, S...>::access(Arg arg, Args... args) -> reference
{
if (sizeof...(Args) >= this->dimension())
{
return access(args...);
}
return access_impl(make_index_sequence(arg, args...), arg, args...);
}
template <class CT, class... S>
inline auto xview<CT, S...>::access() const -> const_reference
{
return access_impl(make_index_sequence());
}
template <class CT, class... S>
template <class Arg, class... Args>
inline auto xview<CT, S...>::access(Arg arg, Args... args) const -> const_reference
{
if (sizeof...(Args) >= this->dimension())
{
return access(args...);
}
return access_impl(make_index_sequence(arg, args...), arg, args...);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type... I, class... Args>
inline auto xview<CT, S...>::unchecked_impl(std::index_sequence<I...>, Args... args) -> reference
{
return m_e.unchecked(index<I>(args...)...);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type... I, class... Args>
inline auto xview<CT, S...>::unchecked_impl(std::index_sequence<I...>, Args... args) const
-> const_reference
{
return m_e.unchecked(index<I>(args...)...);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type... I, class... Args>
inline auto xview<CT, S...>::access_impl(std::index_sequence<I...>, Args... args) -> reference
{
return m_e(index<I>(args...)...);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type... I, class... Args>
inline auto xview<CT, S...>::access_impl(std::index_sequence<I...>, Args... args) const -> const_reference
{
return m_e(index<I>(args...)...);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type I, class... Args>
inline auto xview<CT, S...>::index(Args... args) const
-> std::enable_if_t<lesser_condition<I>::value, size_type>
{
return sliced_access<I - integral_count_before<S...>(I) + newaxis_count_before<S...>(I + 1)>(
std::get<I + newaxis_count_before<S...>(I + 1)>(m_slices),
args...
);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type I, class... Args>
inline auto xview<CT, S...>::index(Args... args) const
-> std::enable_if_t<!lesser_condition<I>::value, size_type>
{
return argument<I - integral_count<S...>() + newaxis_count<S...>()>(args...);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type I, class T>
inline auto xview<CT, S...>::sliced_access(const xslice<T>& slice) const -> size_type
{
return static_cast<size_type>(slice.derived_cast()(0));
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type I, class T, class Arg, class... Args>
inline auto xview<CT, S...>::sliced_access(const xslice<T>& slice, Arg arg, Args... args) const -> size_type
{
using ST = typename T::size_type;
return static_cast<size_type>(
slice.derived_cast()(argument<I>(static_cast<ST>(arg), static_cast<ST>(args)...))
);
}
template <class CT, class... S>
template <typename std::decay_t<CT>::size_type I, class T, class... Args>
inline auto xview<CT, S...>::sliced_access(const T& squeeze, Args...) const -> disable_xslice<T, size_type>
{
return static_cast<size_type>(squeeze);
}
template <class CT, class... S>
template <class It>
inline auto xview<CT, S...>::make_index(It first, It last) const -> base_index_type
{
auto index = xtl::make_sequence<base_index_type>(m_e.dimension(), 0);
using diff_type = typename std::iterator_traits<It>::difference_type;
using ivalue_type = typename base_index_type::value_type;
auto func1 = [&first](const auto& s) noexcept
{
return get_slice_value(s, first);
};
auto func2 = [](const auto& s) noexcept
{
return xt::value(s, 0);
};
auto s = static_cast<diff_type>(
(std::min)(static_cast<size_type>(std::distance(first, last)), this->dimension())
);
auto first_copy = last - s;
for (size_type i = 0; i != m_e.dimension(); ++i)
{
size_type k = newaxis_skip<S...>(i);
// need to advance captured `first`
first = first_copy;
std::advance(first, static_cast<diff_type>(k - xt::integral_count_before<S...>(i)));
if (first < last)
{
index[i] = k < sizeof...(S) ? apply<size_type>(k, func1, m_slices)
: static_cast<ivalue_type>(*first);
}
else
{
index[i] = k < sizeof...(S) ? apply<size_type>(k, func2, m_slices) : ivalue_type(0);
}
}
return index;
}
template <class CT, class... S>
inline auto xview<CT, S...>::compute_shape(std::true_type) const -> inner_shape_type
{
return inner_shape_type(m_e.shape());
}
template <class CT, class... S>
inline auto xview<CT, S...>::compute_shape(std::false_type) const -> inner_shape_type
{
std::size_t dim = m_e.dimension() - integral_count<S...>() + newaxis_count<S...>();
auto shape = xtl::make_sequence<inner_shape_type>(dim, 0);
auto func = [](const auto& s) noexcept
{
return get_size(s);
};
for (size_type i = 0; i != dim; ++i)
{
size_type index = integral_skip<S...>(i);
shape[i] = index < sizeof...(S) ? apply<size_type>(index, func, m_slices)
: m_e.shape()[index - newaxis_count_before<S...>(index)];
}
return shape;
}
namespace xview_detail
{
template <class V, class T>
inline void run_assign_temporary_impl(V& v, const T& t, std::true_type /* enable strided assign */)
{
strided_loop_assigner<true>::run(v, t);
}
template <class V, class T>
inline void
run_assign_temporary_impl(V& v, const T& t, std::false_type /* fallback to iterator assign */)
{
std::copy(t.cbegin(), t.cend(), v.begin());
}
}
template <class CT, class... S>
inline void xview<CT, S...>::assign_temporary_impl(temporary_type&& tmp)
{
constexpr bool fast_assign = detail::is_strided_view<xexpression_type, S...>::value
&& xassign_traits<xview<CT, S...>, temporary_type>::simd_strided_assign();
xview_detail::run_assign_temporary_impl(*this, tmp, std::integral_constant<bool, fast_assign>{});
}
namespace detail
{
template <class E, class... S>
inline std::size_t get_underlying_shape_index(std::size_t I)
{
return I - newaxis_count_before<get_slice_type<E, S>...>(I);
}
template <class... S>
struct check_slice;
template <>
struct check_slice<>
{
using type = void_t<>;
};
template <class S, class... SL>
struct check_slice<S, SL...>
{
static_assert(!std::is_same<S, xellipsis_tag>::value, "ellipsis not supported vith xview");
using type = typename check_slice<SL...>::type;
};
template <class E, std::size_t... I, class... S>
inline auto make_view_impl(E&& e, std::index_sequence<I...>, S&&... slices)
{
// Checks that no ellipsis slice is used
using view_type = xview<xtl::closure_type_t<E>, get_slice_type<std::decay_t<E>, S>...>;
return view_type(
std::forward<E>(e),
get_slice_implementation(
e,
std::forward<S>(slices),
get_underlying_shape_index<std::decay_t<E>, S...>(I)
)...
);
}
}
/**
* Constructs and returns a view on the specified xexpression. Users
* should not directly construct the slices but call helper functions
* instead.
* @param e the xexpression to adapt
* @param slices the slices list describing the view. \c view accepts negative
* indices, in that case indexing is done in reverse order.
* @sa range, all, newaxis
*/
template <class E, class... S>
inline auto view(E&& e, S&&... slices)
{
return detail::make_view_impl(
std::forward<E>(e),
std::make_index_sequence<sizeof...(S)>(),
std::forward<S>(slices)...
);
}
namespace detail
{
class row_impl
{
public:
template <class E>
inline static auto make(E&& e, const std::ptrdiff_t index)
{
const auto shape = e.shape();
check_dimension(shape);
return view(e, index, xt::all());
}
private:
template <class S>
inline static void check_dimension(const S& shape)
{
if (shape.size() != 2)
{
XTENSOR_THROW(
std::invalid_argument,
"A row can only be accessed on an expression with exact two dimensions"
);
}
}
template <class T, std::size_t N>
inline static void check_dimension(const std::array<T, N>&)
{
static_assert(N == 2, "A row can only be accessed on an expression with exact two dimensions");
}
};
class column_impl
{
public:
template <class E>
inline static auto make(E&& e, const std::ptrdiff_t index)
{
const auto shape = e.shape();
check_dimension(shape);
return view(e, xt::all(), index);
}
private:
template <class S>
inline static void check_dimension(const S& shape)
{
if (shape.size() != 2)
{
XTENSOR_THROW(
std::invalid_argument,
"A column can only be accessed on an expression with exact two dimensions"
);
}
}
template <class T, std::size_t N>
inline static void check_dimension(const std::array<T, N>&)
{
static_assert(N == 2, "A column can only be accessed on an expression with exact two dimensions");
}
};
}
/**
* Constructs and returns a row (sliced view) on the specified expression.
* Users should not directly construct the slices but call helper functions
* instead. This function is only allowed on expressions with two dimensions.
* @param e the xexpression to adapt
* @param index 0-based index of the row, negative indices will return the
* last rows in reverse order.
* @throws std::invalid_argument if the expression has more than 2 dimensions.
*/
template <class E>
inline auto row(E&& e, std::ptrdiff_t index)
{
return detail::row_impl::make(e, index);
}
/**
* Constructs and returns a column (sliced view) on the specified expression.
* Users should not directly construct the slices but call helper functions
* instead. This function is only allowed on expressions with two dimensions.
* @param e the xexpression to adapt
* @param index 0-based index of the column, negative indices will return the
* last columns in reverse order.
* @throws std::invalid_argument if the expression has more than 2 dimensions.
*/
template <class E>
inline auto col(E&& e, std::ptrdiff_t index)
{
return detail::column_impl::make(e, index);
}
/***************
* stepper api *
***************/
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_begin(const ST& shape) -> std::enable_if_t<!Enable, stepper>
{
size_type offset = shape.size() - this->dimension();
return stepper(this, m_e.stepper_begin(m_e.shape()), offset);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_end(const ST& shape, layout_type l)
-> std::enable_if_t<!Enable, stepper>
{
size_type offset = shape.size() - this->dimension();
return stepper(this, m_e.stepper_end(m_e.shape(), l), offset, true, l);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_begin(const ST& shape) const
-> std::enable_if_t<!Enable, const_stepper>
{
size_type offset = shape.size() - this->dimension();
const xexpression_type& e = m_e;
return const_stepper(this, e.stepper_begin(m_e.shape()), offset);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_end(const ST& shape, layout_type l) const
-> std::enable_if_t<!Enable, const_stepper>
{
size_type offset = shape.size() - this->dimension();
const xexpression_type& e = m_e;
return const_stepper(this, e.stepper_end(m_e.shape(), l), offset, true, l);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_begin(const ST& shape) -> std::enable_if_t<Enable, stepper>
{
size_type offset = shape.size() - this->dimension();
return stepper(this, data_xbegin(), offset);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_end(const ST& shape, layout_type l)
-> std::enable_if_t<Enable, stepper>
{
size_type offset = shape.size() - this->dimension();
return stepper(this, data_xend(l, offset), offset);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_begin(const ST& shape) const
-> std::enable_if_t<Enable, const_stepper>
{
size_type offset = shape.size() - this->dimension();
return const_stepper(this, data_xbegin(), offset);
}
template <class CT, class... S>
template <class ST, bool Enable>
inline auto xview<CT, S...>::stepper_end(const ST& shape, layout_type l) const
-> std::enable_if_t<Enable, const_stepper>
{
size_type offset = shape.size() - this->dimension();
return const_stepper(this, data_xend(l, offset), offset);
}
/********************************
* xview_stepper implementation *
********************************/
template <bool is_const, class CT, class... S>
inline xview_stepper<is_const, CT, S...>::xview_stepper(
view_type* view,
substepper_type it,
size_type offset,
bool end,
layout_type l
)
: p_view(view)
, m_it(it)
, m_offset(offset)
{
if (!end)
{
std::fill(m_index_keeper.begin(), m_index_keeper.end(), 0);
auto func = [](const auto& s) noexcept
{
return xt::value(s, 0);
};
for (size_type i = 0; i < sizeof...(S); ++i)
{
if (!is_newaxis_slice(i))
{
size_type s = apply<size_type>(i, func, p_view->slices());
size_type index = i - newaxis_count_before<S...>(i);
m_it.step(index, s);
}
}
}
else
{
to_end_impl(l);
}
}
template <bool is_const, class CT, class... S>
inline auto xview_stepper<is_const, CT, S...>::operator*() const -> reference
{
return *m_it;
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::step(size_type dim)
{
auto func = [this](size_type index, size_type offset)
{
m_it.step(index, offset);
};
common_step_forward(dim, func);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::step_back(size_type dim)
{
auto func = [this](size_type index, size_type offset)
{
m_it.step_back(index, offset);
};
common_step_backward(dim, func);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::step(size_type dim, size_type n)
{
auto func = [this](size_type index, size_type offset)
{
m_it.step(index, offset);
};
common_step_forward(dim, n, func);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::step_back(size_type dim, size_type n)
{
auto func = [this](size_type index, size_type offset)
{
m_it.step_back(index, offset);
};
common_step_backward(dim, n, func);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::reset(size_type dim)
{
auto func = [this](size_type index, size_type offset)
{
m_it.step_back(index, offset);
};
common_reset(dim, func, false);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::reset_back(size_type dim)
{
auto func = [this](size_type index, size_type offset)
{
m_it.step(index, offset);
};
common_reset(dim, func, true);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::to_begin()
{
std::fill(m_index_keeper.begin(), m_index_keeper.end(), 0);
m_it.to_begin();
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::to_end(layout_type l)
{
m_it.to_end(l);
to_end_impl(l);
}
template <bool is_const, class CT, class... S>
inline bool xview_stepper<is_const, CT, S...>::is_newaxis_slice(size_type index) const noexcept
{
// A bit tricky but avoids a lot of template instantiations
return newaxis_count_before<S...>(index + 1) != newaxis_count_before<S...>(index);
}
template <bool is_const, class CT, class... S>
inline void xview_stepper<is_const, CT, S...>::to_end_impl(layout_type l)
{
auto func = [](const auto& s) noexcept
{
return xt::value(s, get_size(s) - 1);
};
auto size_func = [](const auto& s) noexcept
{
return get_size(s);
};
for (size_type i = 0; i < sizeof...(S); ++i)
{
if (!is_newaxis_slice(i))
{
size_type s = apply<size_type>(i, func, p_view->slices());
size_type ix = apply<size_type>(i, size_func, p_view->slices());
m_index_keeper[i] = ix - size_type(1);
size_type index = i - newaxis_count_before<S...>(i);
s = p_view->underlying_size(index) - 1 - s;
m_it.step_back(index, s);
}
}
if (l == layout_type::row_major)
{
for (size_type i = sizeof...(S); i > 0; --i)
{
if (!is_newaxis_slice(i - 1))
{
m_index_keeper[i - 1]++;
break;
}
}
}
else if (l == layout_type::column_major)
{
for (size_type i = 0; i < sizeof...(S); ++i)
{
if (!is_newaxis_slice(i))
{
m_index_keeper[i]++;
break;
}
}
}
else
{
XTENSOR_THROW(std::runtime_error, "Iteration only allowed in row or column major.");
}
}
template <bool is_const, class CT, class... S>
template <class F>
void xview_stepper<is_const, CT, S...>::common_step_forward(size_type dim, F f)
{
if (dim >= m_offset)
{
auto func = [&dim, this](const auto& s) noexcept
{
return step_size(s, this->m_index_keeper[dim]++, 1);
};
size_type index = integral_skip<S...>(dim);
if (!is_newaxis_slice(index))
{
size_type step_size = index < sizeof...(S) ? apply<size_type>(index, func, p_view->slices())
: 1;
index -= newaxis_count_before<S...>(index);
f(index, step_size);
}
}
}
template <bool is_const, class CT, class... S>
template <class F>
void xview_stepper<is_const, CT, S...>::common_step_forward(size_type dim, size_type n, F f)
{
if (dim >= m_offset)
{
auto func = [&dim, &n, this](const auto& s) noexcept
{
auto st_size = step_size(s, this->m_index_keeper[dim], n);
this->m_index_keeper[dim] += n;
return size_type(st_size);
};
size_type index = integral_skip<S...>(dim);
if (!is_newaxis_slice(index))
{
size_type step_size = index < sizeof...(S) ? apply<size_type>(index, func, p_view->slices())
: n;
index -= newaxis_count_before<S...>(index);
f(index, step_size);
}
}
}
template <bool is_const, class CT, class... S>
template <class F>
void xview_stepper<is_const, CT, S...>::common_step_backward(size_type dim, F f)
{
if (dim >= m_offset)
{
auto func = [&dim, this](const auto& s) noexcept
{
this->m_index_keeper[dim]--;
return step_size(s, this->m_index_keeper[dim], 1);
};
size_type index = integral_skip<S...>(dim);
if (!is_newaxis_slice(index))
{
size_type step_size = index < sizeof...(S) ? apply<size_type>(index, func, p_view->slices())
: 1;
index -= newaxis_count_before<S...>(index);
f(index, step_size);
}
}
}
template <bool is_const, class CT, class... S>
template <class F>
void xview_stepper<is_const, CT, S...>::common_step_backward(size_type dim, size_type n, F f)
{
if (dim >= m_offset)
{
auto func = [&dim, &n, this](const auto& s) noexcept
{
this->m_index_keeper[dim] -= n;
return step_size(s, this->m_index_keeper[dim], n);
};
size_type index = integral_skip<S...>(dim);
if (!is_newaxis_slice(index))
{
size_type step_size = index < sizeof...(S) ? apply<size_type>(index, func, p_view->slices())
: n;
index -= newaxis_count_before<S...>(index);
f(index, step_size);
}
}
}
template <bool is_const, class CT, class... S>
template <class F>
void xview_stepper<is_const, CT, S...>::common_reset(size_type dim, F f, bool backwards)
{
auto size_func = [](const auto& s) noexcept
{
return get_size(s);
};
auto end_func = [](const auto& s) noexcept
{
return xt::value(s, get_size(s) - 1) - xt::value(s, 0);
};
size_type index = integral_skip<S...>(dim);
if (!is_newaxis_slice(index))
{
if (dim < m_index_keeper.size())
{
size_type size = index < sizeof...(S) ? apply<size_type>(index, size_func, p_view->slices())
: p_view->shape()[dim];
m_index_keeper[dim] = backwards ? size - 1 : 0;
}
size_type reset_n = index < sizeof...(S) ? apply<size_type>(index, end_func, p_view->slices())
: p_view->shape()[dim] - 1;
index -= newaxis_count_before<S...>(index);
f(index, reset_n);
}
}
}
#endif