2025-05-15 21:04:28 +08:00

405 lines
11 KiB
C

#ifndef _MATH_H
#define _MATH_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _HUGE_ENUF
#define _HUGE_ENUF 1e+300 // _HUGE_ENUF*_HUGE_ENUF must overflow
#endif
#define INFINITY ((float)(_HUGE_ENUF * _HUGE_ENUF))
#define HUGE_VALF INFINITY
#define HUGE_VAL ((double)INFINITY)
#define HUGE_VALL ((long double)INFINITY)
#define NAN ((float)(INFINITY * 0.0F))
#define MATH_ERRNO 1
#define MATH_ERREXCEPT 2
#define math_errhandling 2
#define FP_ILOGBNAN (-1-0x7fffffff)
#define FP_ILOGB0 FP_ILOGBNAN
#define ULLONG_NSHIFT 0xFFFFFFFFFFFFFFFF
#define ULLONG_SHIFT1 0x7FFFFFFFFFFFFFFF
#define FP_NAN 0
#define FP_INFINITE 1
#define FP_ZERO 2
#define FP_SUBNORMAL 3
#define FP_NORMAL 4
#ifdef __FP_FAST_FMA
#define FP_FAST_FMA 1
#endif
#ifdef __FP_FAST_FMAF
#define FP_FAST_FMAF 1
#endif
#ifdef __FP_FAST_FMAL
#define FP_FAST_FMAL 1
#endif
#define FLT_EVAL_METHOD 0
/* Support non-nearest rounding mode. */
#define WANT_ROUNDING 1
/* Support signaling NaNs. */
#define WANT_SNAN 0
#if WANT_SNAN
#error SNaN is unsupported
#else
#define issignalingf_inline(x) 0
#define issignaling_inline(x) 0
#endif
#define predict_true(x) (x)
#define predict_false(x) (x)
int __fpclassify(double);
int __fpclassifyf(float);
int __fpclassifyl(long double);
static __inline unsigned __FLOAT_BITS(float __f)
{
union {float __f; unsigned __i;} __u;
__u.__f = __f;
return __u.__i;
}
static __inline unsigned long long __DOUBLE_BITS(double __f)
{
union {double __f; unsigned long long __i;} __u;
__u.__f = __f;
return __u.__i;
}
#define fpclassify(x) ( \
sizeof(x) == sizeof(float) ? __fpclassifyf(x) : \
sizeof(x) == sizeof(double) ? __fpclassify(x) : \
__fpclassifyl(x) )
#define isinf(x) ( \
sizeof(x) == sizeof(float) ? (__FLOAT_BITS(x) & 0x7fffffff) == 0x7f800000 : \
sizeof(x) == sizeof(double) ? (__DOUBLE_BITS(x) & ULLONG_SHIFT1) == 0x7ffULL<<52 : \
__fpclassifyl(x) == FP_INFINITE)
#define isnan(x) ( \
sizeof(x) == sizeof(float) ? (__FLOAT_BITS(x) & 0x7fffffff) > 0x7f800000 : \
sizeof(x) == sizeof(double) ? (__DOUBLE_BITS(x) & ULLONG_SHIFT1) > 0x7ffULL<<52 : \
__fpclassifyl(x) == FP_NAN)
#define isnormal(x) ( \
sizeof(x) == sizeof(float) ? ((__FLOAT_BITS(x)+0x00800000) & 0x7fffffff) >= 0x01000000 : \
sizeof(x) == sizeof(double) ? ((__DOUBLE_BITS(x)+(1ULL<<52)) & ULLONG_SHIFT1) >= 1ULL<<53 : \
__fpclassifyl(x) == FP_NORMAL)
#define isfinite(x) ( \
sizeof(x) == sizeof(float) ? (__FLOAT_BITS(x) & 0x7fffffff) < 0x7f800000 : \
sizeof(x) == sizeof(double) ? (__DOUBLE_BITS(x) & ULLONG_SHIFT1) < 0x7ffULL<<52 : \
__fpclassifyl(x) > FP_INFINITE)
int __signbit(double);
int __signbitf(float);
int __signbitl(long double);
#define signbit(x) ( \
sizeof(x) == sizeof(float) ? (int)(__FLOAT_BITS(x)>>31) : \
sizeof(x) == sizeof(double) ? (int)(__DOUBLE_BITS(x)>>63) : \
__signbitl(x) )
#define isunordered(x,y) (isnan((x)) ? ((void)(y),1) : isnan((y)))
#define __ISREL_DEF(rel, op, type) \
static __inline int __is##rel(type __x, type __y) \
{ return !isunordered(__x,__y) && __x op __y; }
__ISREL_DEF(lessf, <, float)
__ISREL_DEF(less, <, double)
__ISREL_DEF(lessl, <, long double)
__ISREL_DEF(lessequalf, <=, float)
__ISREL_DEF(lessequal, <=, double)
__ISREL_DEF(lessequall, <=, long double)
__ISREL_DEF(lessgreaterf, !=, float)
__ISREL_DEF(lessgreater, !=, double)
__ISREL_DEF(lessgreaterl, !=, long double)
__ISREL_DEF(greaterf, >, float)
__ISREL_DEF(greater, >, double)
__ISREL_DEF(greaterl, >, long double)
__ISREL_DEF(greaterequalf, >=, float)
__ISREL_DEF(greaterequal, >=, double)
__ISREL_DEF(greaterequall, >=, long double)
#define __tg_pred_2(x, y, p) ( \
sizeof((x)+(y)) == sizeof(float) ? p##f(x, y) : \
sizeof((x)+(y)) == sizeof(double) ? p(x, y) : \
p##l(x, y) )
#define isless(x, y) __tg_pred_2(x, y, __isless)
#define islessequal(x, y) __tg_pred_2(x, y, __islessequal)
#define islessgreater(x, y) __tg_pred_2(x, y, __islessgreater)
#define isgreater(x, y) __tg_pred_2(x, y, __isgreater)
#define isgreaterequal(x, y) __tg_pred_2(x, y, __isgreaterequal)
/* Evaluate an expression as the specified type. With standard excess
precision handling a type cast or assignment is enough (with
-ffloat-store an assignment is required, in old compilers argument
passing and return statement may not drop excess precision). */
static inline float eval_as_float(float x)
{
float y = x;
return y;
}
static inline double eval_as_double(double x)
{
double y = x;
return y;
}
/* fp_barrier returns its input, but limits code transformations
as if it had a side-effect (e.g. observable io) and returned
an arbitrary value. */
#ifndef fp_barrierf
#define fp_barrierf fp_barrierf
static inline float fp_barrierf(float x)
{
volatile float y = x;
return y;
}
#endif
#ifndef fp_barrier
#define fp_barrier fp_barrier
static inline double fp_barrier(double x)
{
volatile double y = x;
return y;
}
#endif
#ifndef fp_barrierl
#define fp_barrierl fp_barrierl
static inline long double fp_barrierl(long double x)
{
volatile long double y = x;
return y;
}
#endif
/* fp_force_eval ensures that the input value is computed when that's
otherwise unused. To prevent the constant folding of the input
expression, an additional fp_barrier may be needed or a compilation
mode that does so (e.g. -frounding-math in gcc). Then it can be
used to evaluate an expression for its fenv side-effects only. */
#ifndef fp_force_evalf
#define fp_force_evalf fp_force_evalf
static inline void fp_force_evalf(float x)
{
volatile float y;
y = x;
}
#endif
#ifndef fp_force_eval
#define fp_force_eval fp_force_eval
static inline void fp_force_eval(double x)
{
volatile double y;
y = x;
}
#endif
#ifndef fp_force_evall
#define fp_force_evall fp_force_evall
static inline void fp_force_evall(long double x)
{
volatile long double y;
y = x;
}
#endif
#define FORCE_EVAL(x) do { \
if (sizeof(x) == sizeof(float)) { \
fp_force_evalf(x); \
} else if (sizeof(x) == sizeof(double)) { \
fp_force_eval(x); \
} else { \
fp_force_evall(x); \
} \
} while(0)
typedef union {float _f; unsigned int _i;}asuint_union;
typedef union {unsigned int _i; float _f;}asfloat_union;
typedef union {double _f; unsigned long long _i;}asuint64_union;
typedef union {unsigned long long _i; double _f;}asdouble_union;
#define asuint(f) ((asuint_union){f})._i
#define asfloat(i) ((asfloat_union){i})._f
#define asuint64(f) ((asuint64_union){f})._i
#define asdouble(i) ((asdouble_union){i})._f
#define EXTRACT_WORDS(hi,lo,d) \
do { \
unsigned long long __u = asuint64(d); \
(hi) = __u >> 32; \
(lo) = (unsigned int)__u; \
} while (0)
#define GET_HIGH_WORD(hi,d) \
do { \
(hi) = asuint64(d) >> 32; \
} while (0)
#define GET_LOW_WORD(lo,d) \
do { \
(lo) = (unsigned int)asuint64(d); \
} while (0)
#define INSERT_WORDS(d,hi,lo) \
do { \
(d) = asdouble(((unsigned long long)(hi)<<32) | (unsigned int)(lo)); \
} while (0)
#define SET_HIGH_WORD(d,hi) \
INSERT_WORDS(d, hi, (unsigned int)asuint64(d))
#define SET_LOW_WORD(d,lo) \
INSERT_WORDS(d, asuint64(d)>>32, lo)
#define GET_FLOAT_WORD(w,d) \
do { \
(w) = asuint(d); \
} while (0)
#define SET_FLOAT_WORD(d,w) \
do { \
(d) = asfloat(w); \
} while (0)
int __rem_pio2_large(double*, double*, int, int, int);
int __rem_pio2(double, double*);
double __sin(double, double, int);
double __cos(double, double);
double __tan(double, double, int);
/* error handling functions */
float __math_xflowf(unsigned int, float);
float __math_uflowf(unsigned int);
float __math_oflowf(unsigned int);
float __math_divzerof(unsigned int);
float __math_invalidf(float);
double __math_xflow(unsigned int, double);
double __math_uflow(unsigned int);
double __math_oflow(unsigned int);
double __math_divzero(unsigned int);
double __math_invalid(double);
#if LDBL_MANT_DIG != DBL_MANT_DIG
long double __math_invalidl(long double);
#endif
double acos(double);
double asin(double);
double atan(double);
double atan2(double, double);
double cbrt(double);
double ceil(double);
double cos(double);
double degrees(double);
double exp(double);
double fabs(double);
int factorial(int);
double floor(double);
double fmax(double, double);
double fmin(double, double);
double fmod(double, double);
double fsum(double*, int);
int gcd(int, int);
double log(double);
double log10(double);
double log2(double);
double modf(double, double *);
double pow(double, double);
double radians(double);
double scalbn(double, int);
double sin(double);
double sqrt(double);
double tan(double);
double trunc(double);
#define FLT_TRUE_MIN 1.40129846432481707092e-45F
#define FLT_MIN 1.17549435082228750797e-38F
#define FLT_MAX 3.40282346638528859812e+38F
#define FLT_EPSILON 1.1920928955078125e-07F
#define FLT_MANT_DIG 24
#define FLT_MIN_EXP (-125)
#define FLT_MAX_EXP 128
#define FLT_HAS_SUBNORM 1
#define FLT_DIG 6
#define FLT_DECIMAL_DIG 9
#define FLT_MIN_10_EXP (-37)
#define FLT_MAX_10_EXP 38
#define DBL_TRUE_MIN 4.94065645841246544177e-324
#define DBL_MIN 2.22507385850720138309e-308
#define DBL_MAX 1.79769313486231570815e+308
#define DBL_EPSILON 2.22044604925031308085e-16
#define DBL_MANT_DIG 53
#define DBL_MIN_EXP (-1021)
#define DBL_MAX_EXP 1024
#define DBL_HAS_SUBNORM 1
#define DBL_DIG 15
#define DBL_DECIMAL_DIG 17
#define DBL_MIN_10_EXP (-307)
#define DBL_MAX_10_EXP 308
#define LDBL_HAS_SUBNORM 1
#define LDBL_DECIMAL_DIG DBL_DECIMAL_DIG
#define LDBL_MANT_DIG DBL_MANT_DIG
#define LDBL_MAX_EXP DBL_MAX_EXP
#undef MAXFLOAT
#define MAXFLOAT 3.40282346638528859812e+38F
#define HUGE 3.40282346638528859812e+38F
#define M_DEG2RAD 0.017453292519943295 /* pi/180 */
#define M_E 2.7182818284590452354 /* e */
#define M_LOG2E 1.4426950408889634074 /* log_2 e */
#define M_LOG10E 0.43429448190325182765 /* log_10 e */
#define M_LN2 0.69314718055994530942 /* log_e 2 */
#define M_LN10 2.30258509299404568402 /* log_e 10 */
#define M_PI 3.14159265358979323846 /* pi */
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#define M_PI_4 0.78539816339744830962 /* pi/4 */
#define M_1_PI 0.31830988618379067154 /* 1/pi */
#define M_2_PI 0.63661977236758134308 /* 2/pi */
#define M_RAD2DEG 57.29577951308232 /* 180/pi */
#define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
// extern int signgam;
// double j0(double);
// double j1(double);
// double jn(int, double);
// double y0(double);
// double y1(double);
// double yn(int, double);
#ifdef __cplusplus
}
#endif
#endif