pocketpy/src/pocketpy.h
2023-03-18 11:12:24 +08:00

931 lines
34 KiB
C++

#pragma once
#include "ceval.h"
#include "compiler.h"
#include "repl.h"
#include "iter.h"
#include "cffi.h"
#include "io.h"
#include "_generated.h"
namespace pkpy {
CodeObject_ VM::compile(Str source, Str filename, CompileMode mode) {
Compiler compiler(this, source.c_str(), filename, mode);
try{
return compiler.compile();
}catch(Exception& e){
// std::cout << e.summary() << std::endl;
_error(e);
return nullptr;
}
}
#define BIND_NUM_ARITH_OPT(name, op) \
_vm->_bind_methods<1>({"int","float"}, #name, [](VM* vm, Args& args){ \
if(is_both_int(args[0], args[1])){ \
return VAR(_CAST(i64, args[0]) op _CAST(i64, args[1])); \
}else{ \
return VAR(vm->num_to_float(args[0]) op vm->num_to_float(args[1])); \
} \
});
#define BIND_NUM_LOGICAL_OPT(name, op, is_eq) \
_vm->_bind_methods<1>({"int","float"}, #name, [](VM* vm, Args& args){ \
if(!is_both_int_or_float(args[0], args[1])){ \
if constexpr(is_eq) return VAR(args[0] op args[1]); \
vm->TypeError("unsupported operand type(s) for " #op ); \
} \
if(is_both_int(args[0], args[1])) \
return VAR(_CAST(i64, args[0]) op _CAST(i64, args[1])); \
return VAR(vm->num_to_float(args[0]) op vm->num_to_float(args[1])); \
});
void init_builtins(VM* _vm) {
BIND_NUM_ARITH_OPT(__add__, +)
BIND_NUM_ARITH_OPT(__sub__, -)
BIND_NUM_ARITH_OPT(__mul__, *)
BIND_NUM_LOGICAL_OPT(__lt__, <, false)
BIND_NUM_LOGICAL_OPT(__le__, <=, false)
BIND_NUM_LOGICAL_OPT(__gt__, >, false)
BIND_NUM_LOGICAL_OPT(__ge__, >=, false)
BIND_NUM_LOGICAL_OPT(__eq__, ==, true)
BIND_NUM_LOGICAL_OPT(__ne__, !=, true)
#undef BIND_NUM_ARITH_OPT
#undef BIND_NUM_LOGICAL_OPT
_vm->bind_builtin_func<1>("__sys_stdout_write", [](VM* vm, Args& args) {
(*vm->_stdout) << CAST(Str&, args[0]);
return vm->None;
});
_vm->bind_builtin_func<0>("super", [](VM* vm, Args& args) {
const PyVar* self = vm->top_frame()->f_locals().try_get(m_self);
if(self == nullptr) vm->TypeError("super() can only be called in a class");
return vm->new_object(vm->tp_super, *self);
});
_vm->bind_builtin_func<1>("id", [](VM* vm, Args& args) {
const PyVar& obj = args[0];
if(obj.is_tagged()) return VAR((i64)0);
return VAR(obj.bits);
});
_vm->bind_builtin_func<1>("eval", [](VM* vm, Args& args) {
CodeObject_ code = vm->compile(CAST(Str&, args[0]), "<eval>", EVAL_MODE);
return vm->_exec(code, vm->top_frame()->_module, vm->top_frame()->_locals);
});
_vm->bind_builtin_func<1>("exec", [](VM* vm, Args& args) {
CodeObject_ code = vm->compile(CAST(Str&, args[0]), "<exec>", EXEC_MODE);
vm->_exec(code, vm->top_frame()->_module, vm->top_frame()->_locals);
return vm->None;
});
_vm->bind_builtin_func<-1>("exit", [](VM* vm, Args& args) {
if(args.size() == 0) std::exit(0);
else if(args.size() == 1) std::exit(CAST(int, args[0]));
else vm->TypeError("exit() takes at most 1 argument");
return vm->None;
});
_vm->bind_builtin_func<1>("repr", CPP_LAMBDA(vm->asRepr(args[0])));
_vm->bind_builtin_func<1>("len", CPP_LAMBDA(vm->call(args[0], __len__, no_arg())));
_vm->bind_builtin_func<1>("hash", [](VM* vm, Args& args){
i64 value = vm->hash(args[0]);
if(((value << 2) >> 2) != value) value >>= 2;
return VAR(value);
});
_vm->bind_builtin_func<1>("chr", [](VM* vm, Args& args) {
i64 i = CAST(i64, args[0]);
if (i < 0 || i > 128) vm->ValueError("chr() arg not in range(128)");
return VAR(std::string(1, (char)i));
});
_vm->bind_builtin_func<1>("ord", [](VM* vm, Args& args) {
const Str& s = CAST(Str&, args[0]);
if (s.size() != 1) vm->TypeError("ord() expected an ASCII character");
return VAR((i64)(s.c_str()[0]));
});
_vm->bind_builtin_func<2>("hasattr", [](VM* vm, Args& args) {
return VAR(vm->getattr(args[0], CAST(Str&, args[1]), false) != nullptr);
});
_vm->bind_builtin_func<3>("setattr", [](VM* vm, Args& args) {
vm->setattr(args[0], CAST(Str&, args[1]), args[2]);
return vm->None;
});
_vm->bind_builtin_func<2>("getattr", [](VM* vm, Args& args) {
const Str& name = CAST(Str&, args[1]);
return vm->getattr(args[0], name);
});
_vm->bind_builtin_func<1>("hex", [](VM* vm, Args& args) {
std::stringstream ss;
ss << std::hex << CAST(i64, args[0]);
return VAR("0x" + ss.str());
});
_vm->bind_builtin_func<1>("iter", [](VM* vm, Args& args) {
return vm->asIter(args[0]);
});
_vm->bind_builtin_func<1>("dir", [](VM* vm, Args& args) {
std::set<StrName> names;
if(args[0]->is_attr_valid()){
std::vector<StrName> keys = args[0]->attr().keys();
names.insert(keys.begin(), keys.end());
}
const NameDict& t_attr = vm->_t(args[0])->attr();
std::vector<StrName> keys = t_attr.keys();
names.insert(keys.begin(), keys.end());
List ret;
for (StrName name : names) ret.push_back(VAR(name.str()));
return VAR(std::move(ret));
});
_vm->bind_method<0>("object", "__repr__", [](VM* vm, Args& args) {
PyVar self = args[0];
std::uintptr_t addr = self.is_tagged() ? 0 : (uintptr_t)self.get();
StrStream ss;
ss << std::hex << addr;
Str s = "<" + OBJ_NAME(vm->_t(self)) + " object at 0x" + ss.str() + ">";
return VAR(s);
});
_vm->bind_method<1>("object", "__eq__", CPP_LAMBDA(VAR(args[0] == args[1])));
_vm->bind_method<1>("object", "__ne__", CPP_LAMBDA(VAR(args[0] != args[1])));
_vm->bind_static_method<1>("type", "__new__", CPP_LAMBDA(vm->_t(args[0])));
_vm->bind_method<0>("type", "__repr__", CPP_LAMBDA(VAR("<class '" + OBJ_GET(Str, args[0]->attr(__name__)) + "'>")));
_vm->bind_static_method<-1>("range", "__new__", [](VM* vm, Args& args) {
Range r;
switch (args.size()) {
case 1: r.stop = CAST(i64, args[0]); break;
case 2: r.start = CAST(i64, args[0]); r.stop = CAST(i64, args[1]); break;
case 3: r.start = CAST(i64, args[0]); r.stop = CAST(i64, args[1]); r.step = CAST(i64, args[2]); break;
default: vm->TypeError("expected 1-3 arguments, but got " + std::to_string(args.size()));
}
return VAR(r);
});
_vm->bind_method<0>("range", "__iter__", CPP_LAMBDA(
vm->PyIter(RangeIter(vm, args[0]))
));
_vm->bind_method<0>("NoneType", "__repr__", CPP_LAMBDA(VAR("None")));
_vm->bind_method<0>("NoneType", "__json__", CPP_LAMBDA(VAR("null")));
_vm->_bind_methods<1>({"int", "float"}, "__truediv__", [](VM* vm, Args& args) {
f64 rhs = vm->num_to_float(args[1]);
if (rhs == 0) vm->ZeroDivisionError();
return VAR(vm->num_to_float(args[0]) / rhs);
});
_vm->_bind_methods<1>({"int", "float"}, "__pow__", [](VM* vm, Args& args) {
if(is_both_int(args[0], args[1])){
i64 lhs = _CAST(i64, args[0]);
i64 rhs = _CAST(i64, args[1]);
bool flag = false;
if(rhs < 0) {flag = true; rhs = -rhs;}
i64 ret = 1;
while(rhs){
if(rhs & 1) ret *= lhs;
lhs *= lhs;
rhs >>= 1;
}
if(flag) return VAR((f64)(1.0 / ret));
return VAR(ret);
}else{
return VAR((f64)std::pow(vm->num_to_float(args[0]), vm->num_to_float(args[1])));
}
});
/************ PyInt ************/
_vm->bind_static_method<1>("int", "__new__", [](VM* vm, Args& args) {
if (is_type(args[0], vm->tp_int)) return args[0];
if (is_type(args[0], vm->tp_float)) return VAR((i64)CAST(f64, args[0]));
if (is_type(args[0], vm->tp_bool)) return VAR(_CAST(bool, args[0]) ? 1 : 0);
if (is_type(args[0], vm->tp_str)) {
const Str& s = CAST(Str&, args[0]);
try{
size_t parsed = 0;
i64 val = S_TO_INT(s, &parsed, 10);
if(parsed != s.size()) throw std::invalid_argument("<?>");
return VAR(val);
}catch(std::invalid_argument&){
vm->ValueError("invalid literal for int(): " + s.escape(true));
}
}
vm->TypeError("int() argument must be a int, float, bool or str");
return vm->None;
});
_vm->bind_method<1>("int", "__floordiv__", [](VM* vm, Args& args) {
i64 rhs = CAST(i64, args[1]);
if(rhs == 0) vm->ZeroDivisionError();
return VAR(CAST(i64, args[0]) / rhs);
});
_vm->bind_method<1>("int", "__mod__", [](VM* vm, Args& args) {
i64 rhs = CAST(i64, args[1]);
if(rhs == 0) vm->ZeroDivisionError();
return VAR(CAST(i64, args[0]) % rhs);
});
_vm->bind_method<0>("int", "__repr__", CPP_LAMBDA(VAR(std::to_string(CAST(i64, args[0])))));
_vm->bind_method<0>("int", "__json__", CPP_LAMBDA(VAR(std::to_string(CAST(i64, args[0])))));
#define INT_BITWISE_OP(name,op) \
_vm->bind_method<1>("int", #name, CPP_LAMBDA(VAR(CAST(i64, args[0]) op CAST(i64, args[1]))));
INT_BITWISE_OP(__lshift__, <<)
INT_BITWISE_OP(__rshift__, >>)
INT_BITWISE_OP(__and__, &)
INT_BITWISE_OP(__or__, |)
INT_BITWISE_OP(__xor__, ^)
#undef INT_BITWISE_OP
/************ PyFloat ************/
_vm->bind_static_method<1>("float", "__new__", [](VM* vm, Args& args) {
if (is_type(args[0], vm->tp_int)) return VAR((f64)CAST(i64, args[0]));
if (is_type(args[0], vm->tp_float)) return args[0];
if (is_type(args[0], vm->tp_bool)) return VAR(_CAST(bool, args[0]) ? 1.0 : 0.0);
if (is_type(args[0], vm->tp_str)) {
const Str& s = CAST(Str&, args[0]);
if(s == "inf") return VAR(INFINITY);
if(s == "-inf") return VAR(-INFINITY);
try{
f64 val = S_TO_FLOAT(s);
return VAR(val);
}catch(std::invalid_argument&){
vm->ValueError("invalid literal for float(): '" + s + "'");
}
}
vm->TypeError("float() argument must be a int, float, bool or str");
return vm->None;
});
_vm->bind_method<0>("float", "__repr__", [](VM* vm, Args& args) {
f64 val = CAST(f64, args[0]);
if(std::isinf(val) || std::isnan(val)) return VAR(std::to_string(val));
StrStream ss;
ss << std::setprecision(std::numeric_limits<f64>::max_digits10-1-2) << val;
std::string s = ss.str();
if(std::all_of(s.begin()+1, s.end(), isdigit)) s += ".0";
return VAR(s);
});
_vm->bind_method<0>("float", "__json__", [](VM* vm, Args& args) {
f64 val = CAST(f64, args[0]);
if(std::isinf(val) || std::isnan(val)) vm->ValueError("cannot jsonify 'nan' or 'inf'");
return VAR(std::to_string(val));
});
/************ PyString ************/
_vm->bind_static_method<1>("str", "__new__", CPP_LAMBDA(vm->asStr(args[0])));
_vm->bind_method<1>("str", "__add__", [](VM* vm, Args& args) {
const Str& lhs = CAST(Str&, args[0]);
const Str& rhs = CAST(Str&, args[1]);
return VAR(lhs + rhs);
});
_vm->bind_method<0>("str", "__len__", [](VM* vm, Args& args) {
const Str& self = CAST(Str&, args[0]);
return VAR(self.u8_length());
});
_vm->bind_method<1>("str", "__contains__", [](VM* vm, Args& args) {
const Str& self = CAST(Str&, args[0]);
const Str& other = CAST(Str&, args[1]);
return VAR(self.find(other) != Str::npos);
});
_vm->bind_method<0>("str", "__str__", CPP_LAMBDA(args[0]));
_vm->bind_method<0>("str", "__iter__", CPP_LAMBDA(vm->PyIter(StringIter(vm, args[0]))));
_vm->bind_method<0>("str", "__repr__", [](VM* vm, Args& args) {
const Str& _self = CAST(Str&, args[0]);
return VAR(_self.escape(true));
});
_vm->bind_method<0>("str", "__json__", [](VM* vm, Args& args) {
const Str& self = CAST(Str&, args[0]);
return VAR(self.escape(false));
});
_vm->bind_method<1>("str", "__eq__", [](VM* vm, Args& args) {
if(is_type(args[0], vm->tp_str) && is_type(args[1], vm->tp_str))
return VAR(CAST(Str&, args[0]) == CAST(Str&, args[1]));
return VAR(args[0] == args[1]);
});
_vm->bind_method<1>("str", "__ne__", [](VM* vm, Args& args) {
if(is_type(args[0], vm->tp_str) && is_type(args[1], vm->tp_str))
return VAR(CAST(Str&, args[0]) != CAST(Str&, args[1]));
return VAR(args[0] != args[1]);
});
_vm->bind_method<1>("str", "__getitem__", [](VM* vm, Args& args) {
const Str& self (CAST(Str&, args[0]));
if(is_type(args[1], vm->tp_slice)){
Slice s = _CAST(Slice, args[1]);
s.normalize(self.u8_length());
return VAR(self.u8_substr(s.start, s.stop));
}
int index = CAST(int, args[1]);
index = vm->normalized_index(index, self.u8_length());
return VAR(self.u8_getitem(index));
});
_vm->bind_method<1>("str", "__gt__", [](VM* vm, Args& args) {
const Str& self (CAST(Str&, args[0]));
const Str& obj (CAST(Str&, args[1]));
return VAR(self > obj);
});
_vm->bind_method<1>("str", "__lt__", [](VM* vm, Args& args) {
const Str& self (CAST(Str&, args[0]));
const Str& obj (CAST(Str&, args[1]));
return VAR(self < obj);
});
_vm->bind_method<2>("str", "replace", [](VM* vm, Args& args) {
const Str& _self = CAST(Str&, args[0]);
const Str& _old = CAST(Str&, args[1]);
const Str& _new = CAST(Str&, args[2]);
Str _copy = _self;
size_t pos = 0;
while ((pos = _copy.find(_old, pos)) != std::string::npos) {
_copy.replace(pos, _old.length(), _new);
pos += _new.length();
}
return VAR(_copy);
});
_vm->bind_method<1>("str", "startswith", [](VM* vm, Args& args) {
const Str& self = CAST(Str&, args[0]);
const Str& prefix = CAST(Str&, args[1]);
return VAR(self.find(prefix) == 0);
});
_vm->bind_method<1>("str", "endswith", [](VM* vm, Args& args) {
const Str& self = CAST(Str&, args[0]);
const Str& suffix = CAST(Str&, args[1]);
return VAR(self.rfind(suffix) == self.length() - suffix.length());
});
_vm->bind_method<1>("str", "join", [](VM* vm, Args& args) {
const Str& self = CAST(Str&, args[0]);
StrStream ss;
PyVar obj = vm->asList(args[1]);
const List& list = CAST(List&, obj);
for (int i = 0; i < list.size(); ++i) {
if (i > 0) ss << self;
ss << CAST(Str&, list[i]);
}
return VAR(ss.str());
});
/************ PyList ************/
_vm->bind_method<1>("list", "append", [](VM* vm, Args& args) {
List& self = CAST(List&, args[0]);
self.push_back(args[1]);
return vm->None;
});
_vm->bind_method<0>("list", "reverse", [](VM* vm, Args& args) {
List& self = CAST(List&, args[0]);
std::reverse(self.begin(), self.end());
return vm->None;
});
_vm->bind_method<1>("list", "__mul__", [](VM* vm, Args& args) {
const List& self = CAST(List&, args[0]);
int n = CAST(int, args[1]);
List result;
result.reserve(self.size() * n);
for(int i = 0; i < n; i++) result.insert(result.end(), self.begin(), self.end());
return VAR(std::move(result));
});
_vm->bind_method<2>("list", "insert", [](VM* vm, Args& args) {
List& self = CAST(List&, args[0]);
int index = CAST(int, args[1]);
if(index < 0) index += self.size();
if(index < 0) index = 0;
if(index > self.size()) index = self.size();
self.insert(self.begin() + index, args[2]);
return vm->None;
});
_vm->bind_method<0>("list", "clear", [](VM* vm, Args& args) {
CAST(List&, args[0]).clear();
return vm->None;
});
_vm->bind_method<0>("list", "copy", CPP_LAMBDA(VAR(CAST(List, args[0]))));
_vm->bind_method<1>("list", "__add__", [](VM* vm, Args& args) {
const List& self = CAST(List&, args[0]);
const List& obj = CAST(List&, args[1]);
List new_list = self;
new_list.insert(new_list.end(), obj.begin(), obj.end());
return VAR(new_list);
});
_vm->bind_method<0>("list", "__len__", [](VM* vm, Args& args) {
const List& self = CAST(List&, args[0]);
return VAR(self.size());
});
_vm->bind_method<0>("list", "__iter__", [](VM* vm, Args& args) {
return vm->PyIter(ArrayIter<List>(vm, args[0]));
});
_vm->bind_method<1>("list", "__getitem__", [](VM* vm, Args& args) {
const List& self = CAST(List&, args[0]);
if(is_type(args[1], vm->tp_slice)){
Slice s = _CAST(Slice, args[1]);
s.normalize(self.size());
List new_list;
for(size_t i = s.start; i < s.stop; i++) new_list.push_back(self[i]);
return VAR(std::move(new_list));
}
int index = CAST(int, args[1]);
index = vm->normalized_index(index, self.size());
return self[index];
});
_vm->bind_method<2>("list", "__setitem__", [](VM* vm, Args& args) {
List& self = CAST(List&, args[0]);
int index = CAST(int, args[1]);
index = vm->normalized_index(index, self.size());
self[index] = args[2];
return vm->None;
});
_vm->bind_method<1>("list", "__delitem__", [](VM* vm, Args& args) {
List& self = CAST(List&, args[0]);
int index = CAST(int, args[1]);
index = vm->normalized_index(index, self.size());
self.erase(self.begin() + index);
return vm->None;
});
/************ PyTuple ************/
_vm->bind_static_method<1>("tuple", "__new__", [](VM* vm, Args& args) {
List list = CAST(List, vm->asList(args[0]));
return VAR(std::move(list));
});
_vm->bind_method<0>("tuple", "__iter__", [](VM* vm, Args& args) {
return vm->PyIter(ArrayIter<Args>(vm, args[0]));
});
_vm->bind_method<1>("tuple", "__getitem__", [](VM* vm, Args& args) {
const Tuple& self = CAST(Tuple&, args[0]);
if(is_type(args[1], vm->tp_slice)){
Slice s = _CAST(Slice, args[1]);
s.normalize(self.size());
List new_list;
for(size_t i = s.start; i < s.stop; i++) new_list.push_back(self[i]);
return VAR(std::move(new_list));
}
int index = CAST(int, args[1]);
index = vm->normalized_index(index, self.size());
return self[index];
});
_vm->bind_method<0>("tuple", "__len__", [](VM* vm, Args& args) {
const Tuple& self = CAST(Tuple&, args[0]);
return VAR(self.size());
});
/************ PyBool ************/
_vm->bind_static_method<1>("bool", "__new__", CPP_LAMBDA(vm->asBool(args[0])));
_vm->bind_method<0>("bool", "__repr__", [](VM* vm, Args& args) {
bool val = CAST(bool, args[0]);
return VAR(val ? "True" : "False");
});
_vm->bind_method<0>("bool", "__json__", [](VM* vm, Args& args) {
bool val = CAST(bool, args[0]);
return VAR(val ? "true" : "false");
});
_vm->bind_method<1>("bool", "__xor__", [](VM* vm, Args& args) {
bool self = CAST(bool, args[0]);
bool other = CAST(bool, args[1]);
return VAR(self ^ other);
});
_vm->bind_method<0>("ellipsis", "__repr__", CPP_LAMBDA(VAR("Ellipsis")));
}
#ifdef _WIN32
#define __EXPORT __declspec(dllexport)
#elif __APPLE__
#define __EXPORT __attribute__((visibility("default"))) __attribute__((used))
#elif __EMSCRIPTEN__
#include <emscripten.h>
#define __EXPORT EMSCRIPTEN_KEEPALIVE
#else
#define __EXPORT
#endif
void add_module_time(VM* vm){
PyVar mod = vm->new_module("time");
vm->bind_func<0>(mod, "time", [](VM* vm, Args& args) {
auto now = std::chrono::high_resolution_clock::now();
return VAR(std::chrono::duration_cast<std::chrono::microseconds>(now.time_since_epoch()).count() / 1000000.0);
});
}
void add_module_sys(VM* vm){
PyVar mod = vm->new_module("sys");
vm->setattr(mod, "version", VAR(PK_VERSION));
vm->bind_func<1>(mod, "getrefcount", CPP_LAMBDA(VAR(args[0].use_count())));
vm->bind_func<0>(mod, "getrecursionlimit", CPP_LAMBDA(VAR(vm->recursionlimit)));
vm->bind_func<1>(mod, "setrecursionlimit", [](VM* vm, Args& args) {
vm->recursionlimit = CAST(int, args[0]);
return vm->None;
});
}
void add_module_json(VM* vm){
PyVar mod = vm->new_module("json");
vm->bind_func<1>(mod, "loads", [](VM* vm, Args& args) {
const Str& expr = CAST(Str&, args[0]);
CodeObject_ code = vm->compile(expr, "<json>", JSON_MODE);
return vm->_exec(code, vm->top_frame()->_module, vm->top_frame()->_locals);
});
vm->bind_func<1>(mod, "dumps", CPP_LAMBDA(vm->call(args[0], __json__)));
}
void add_module_math(VM* vm){
PyVar mod = vm->new_module("math");
vm->setattr(mod, "pi", VAR(3.1415926535897932384));
vm->setattr(mod, "e" , VAR(2.7182818284590452354));
vm->bind_func<1>(mod, "log", CPP_LAMBDA(VAR(std::log(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "log10", CPP_LAMBDA(VAR(std::log10(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "log2", CPP_LAMBDA(VAR(std::log2(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "sin", CPP_LAMBDA(VAR(std::sin(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "cos", CPP_LAMBDA(VAR(std::cos(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "tan", CPP_LAMBDA(VAR(std::tan(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "isnan", CPP_LAMBDA(VAR(std::isnan(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "isinf", CPP_LAMBDA(VAR(std::isinf(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "fabs", CPP_LAMBDA(VAR(std::fabs(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "floor", CPP_LAMBDA(VAR((i64)std::floor(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "ceil", CPP_LAMBDA(VAR((i64)std::ceil(vm->num_to_float(args[0])))));
vm->bind_func<1>(mod, "sqrt", CPP_LAMBDA(VAR(std::sqrt(vm->num_to_float(args[0])))));
}
void add_module_dis(VM* vm){
PyVar mod = vm->new_module("dis");
vm->bind_func<1>(mod, "dis", [](VM* vm, Args& args) {
PyVar f = args[0];
if(is_type(f, vm->tp_bound_method)) f = CAST(BoundMethod, args[0]).method;
CodeObject_ code = CAST(Function, f).code;
(*vm->_stdout) << vm->disassemble(code);
return vm->None;
});
}
struct ReMatch {
PY_CLASS(ReMatch, re, Match)
i64 start;
i64 end;
std::smatch m;
ReMatch(i64 start, i64 end, std::smatch m) : start(start), end(end), m(m) {}
static void _register(VM* vm, PyVar mod, PyVar type){
vm->bind_method<-1>(type, "__init__", CPP_NOT_IMPLEMENTED());
vm->bind_method<0>(type, "start", CPP_LAMBDA(VAR(CAST(ReMatch&, args[0]).start)));
vm->bind_method<0>(type, "end", CPP_LAMBDA(VAR(CAST(ReMatch&, args[0]).end)));
vm->bind_method<0>(type, "span", [](VM* vm, Args& args) {
auto& self = CAST(ReMatch&, args[0]);
return VAR(two_args(VAR(self.start), VAR(self.end)));
});
vm->bind_method<1>(type, "group", [](VM* vm, Args& args) {
auto& self = CAST(ReMatch&, args[0]);
int index = CAST(int, args[1]);
index = vm->normalized_index(index, self.m.size());
return VAR(self.m[index].str());
});
}
};
PyVar _regex_search(const Str& pattern, const Str& string, bool fromStart, VM* vm){
std::regex re(pattern);
std::smatch m;
if(std::regex_search(string, m, re)){
if(fromStart && m.position() != 0) return vm->None;
i64 start = string._to_u8_index(m.position());
i64 end = string._to_u8_index(m.position() + m.length());
return VAR_T(ReMatch, start, end, m);
}
return vm->None;
};
void add_module_re(VM* vm){
PyVar mod = vm->new_module("re");
ReMatch::register_class(vm, mod);
vm->bind_func<2>(mod, "match", [](VM* vm, Args& args) {
const Str& pattern = CAST(Str&, args[0]);
const Str& string = CAST(Str&, args[1]);
return _regex_search(pattern, string, true, vm);
});
vm->bind_func<2>(mod, "search", [](VM* vm, Args& args) {
const Str& pattern = CAST(Str&, args[0]);
const Str& string = CAST(Str&, args[1]);
return _regex_search(pattern, string, false, vm);
});
vm->bind_func<3>(mod, "sub", [](VM* vm, Args& args) {
const Str& pattern = CAST(Str&, args[0]);
const Str& repl = CAST(Str&, args[1]);
const Str& string = CAST(Str&, args[2]);
std::regex re(pattern);
return VAR(std::regex_replace(string, re, repl));
});
vm->bind_func<2>(mod, "split", [](VM* vm, Args& args) {
const Str& pattern = CAST(Str&, args[0]);
const Str& string = CAST(Str&, args[1]);
std::regex re(pattern);
std::sregex_token_iterator it(string.begin(), string.end(), re, -1);
std::sregex_token_iterator end;
List vec;
for(; it != end; ++it){
vec.push_back(VAR(it->str()));
}
return VAR(vec);
});
}
void add_module_random(VM* vm){
PyVar mod = vm->new_module("random");
std::srand(std::time(0));
vm->bind_func<1>(mod, "seed", [](VM* vm, Args& args) {
std::srand((unsigned int)CAST(i64, args[0]));
return vm->None;
});
vm->bind_func<0>(mod, "random", CPP_LAMBDA(VAR(std::rand() / (f64)RAND_MAX)));
vm->bind_func<2>(mod, "randint", [](VM* vm, Args& args) {
i64 a = CAST(i64, args[0]);
i64 b = CAST(i64, args[1]);
if(a > b) std::swap(a, b);
return VAR(a + std::rand() % (b - a + 1));
});
vm->bind_func<2>(mod, "uniform", [](VM* vm, Args& args) {
f64 a = CAST(f64, args[0]);
f64 b = CAST(f64, args[1]);
if(a > b) std::swap(a, b);
return VAR(a + (b - a) * std::rand() / (f64)RAND_MAX);
});
CodeObject_ code = vm->compile(kPythonLibs["random"], "random.py", EXEC_MODE);
vm->_exec(code, mod);
}
void VM::post_init(){
init_builtins(this);
add_module_sys(this);
add_module_time(this);
add_module_json(this);
add_module_math(this);
add_module_re(this);
add_module_dis(this);
add_module_random(this);
add_module_io(this);
add_module_os(this);
add_module_c(this);
_lazy_modules["functools"] = kPythonLibs["functools"];
_lazy_modules["collections"] = kPythonLibs["collections"];
_lazy_modules["heapq"] = kPythonLibs["heapq"];
_lazy_modules["bisect"] = kPythonLibs["bisect"];
_lazy_modules["this"] = kPythonLibs["this"];
CodeObject_ code = compile(kPythonLibs["builtins"], "<builtins>", EXEC_MODE);
this->_exec(code, this->builtins);
code = compile(kPythonLibs["dict"], "<builtins>", EXEC_MODE);
this->_exec(code, this->builtins);
code = compile(kPythonLibs["set"], "<builtins>", EXEC_MODE);
this->_exec(code, this->builtins);
}
} // namespace pkpy
/*************************GLOBAL NAMESPACE*************************/
class PkExportedBase{
public:
virtual ~PkExportedBase() = default;
virtual void* get() = 0;
};
static std::vector<PkExportedBase*> _pk_lookup_table;
template<typename T>
class PkExported : public PkExportedBase{
T* _ptr;
public:
template<typename... Args>
PkExported(Args&&... args) {
_ptr = new T(std::forward<Args>(args)...);
_pk_lookup_table.push_back(this);
}
~PkExported() override { delete _ptr; }
void* get() override { return _ptr; }
operator T*() { return _ptr; }
};
#define PKPY_ALLOCATE(T, ...) *(new PkExported<T>(__VA_ARGS__))
extern "C" {
__EXPORT
/// Delete a pointer allocated by `pkpy_xxx_xxx`.
/// It can be `VM*`, `REPL*`, `char*`, etc.
///
/// !!!
/// If the pointer is not allocated by `pkpy_xxx_xxx`, the behavior is undefined.
/// !!!
void pkpy_delete(void* p){
for(int i = 0; i < _pk_lookup_table.size(); i++){
if(_pk_lookup_table[i]->get() == p){
delete _pk_lookup_table[i];
_pk_lookup_table.erase(_pk_lookup_table.begin() + i);
return;
}
}
free(p);
}
__EXPORT
/// Run a given source on a virtual machine.
void pkpy_vm_exec(pkpy::VM* vm, const char* source){
vm->exec(source, "main.py", pkpy::EXEC_MODE);
}
__EXPORT
/// Get a global variable of a virtual machine.
///
/// Return `__repr__` of the result.
/// If the variable is not found, return `nullptr`.
char* pkpy_vm_get_global(pkpy::VM* vm, const char* name){
pkpy::PyVar* val = vm->_main->attr().try_get(name);
if(val == nullptr) return nullptr;
try{
pkpy::Str repr = pkpy::CAST(pkpy::Str, vm->asRepr(*val));
return strdup(repr.c_str());
}catch(...){
return nullptr;
}
}
__EXPORT
/// Evaluate an expression.
///
/// Return `__repr__` of the result.
/// If there is any error, return `nullptr`.
char* pkpy_vm_eval(pkpy::VM* vm, const char* source){
pkpy::PyVarOrNull ret = vm->exec(source, "<eval>", pkpy::EVAL_MODE);
if(ret == nullptr) return nullptr;
try{
pkpy::Str repr = pkpy::CAST(pkpy::Str, vm->asRepr(ret));
return strdup(repr.c_str());
}catch(...){
return nullptr;
}
}
__EXPORT
/// Create a REPL, using the given virtual machine as the backend.
pkpy::REPL* pkpy_new_repl(pkpy::VM* vm){
return PKPY_ALLOCATE(pkpy::REPL, vm);
}
__EXPORT
/// Input a source line to an interactive console. Return true if need more lines.
bool pkpy_repl_input(pkpy::REPL* r, const char* line){
return r->input(line);
}
__EXPORT
/// Add a source module into a virtual machine.
void pkpy_vm_add_module(pkpy::VM* vm, const char* name, const char* source){
vm->_lazy_modules[name] = source;
}
__EXPORT
/// Create a virtual machine.
pkpy::VM* pkpy_new_vm(bool use_stdio){
return PKPY_ALLOCATE(pkpy::VM, use_stdio);
}
__EXPORT
/// Read the standard output and standard error as string of a virtual machine.
/// The `vm->use_stdio` should be `false`.
/// After this operation, both stream will be cleared.
///
/// Return a json representing the result.
char* pkpy_vm_read_output(pkpy::VM* vm){
if(vm->use_stdio) return nullptr;
pkpy::StrStream* s_out = (pkpy::StrStream*)(vm->_stdout);
pkpy::StrStream* s_err = (pkpy::StrStream*)(vm->_stderr);
pkpy::Str _stdout = s_out->str();
pkpy::Str _stderr = s_err->str();
pkpy::StrStream ss;
ss << '{' << "\"stdout\": " << _stdout.escape(false);
ss << ", " << "\"stderr\": " << _stderr.escape(false) << '}';
s_out->str(""); s_err->str("");
return strdup(ss.str().c_str());
}
typedef i64 (*f_int_t)(char*);
typedef f64 (*f_float_t)(char*);
typedef bool (*f_bool_t)(char*);
typedef char* (*f_str_t)(char*);
typedef void (*f_None_t)(char*);
static f_int_t f_int = nullptr;
static f_float_t f_float = nullptr;
static f_bool_t f_bool = nullptr;
static f_str_t f_str = nullptr;
static f_None_t f_None = nullptr;
__EXPORT
/// Setup the callback functions.
void pkpy_setup_callbacks(f_int_t _f_int, f_float_t _f_float, f_bool_t _f_bool, f_str_t _f_str, f_None_t _f_None){
f_int = _f_int;
f_float = _f_float;
f_bool = _f_bool;
f_str = _f_str;
f_None = _f_None;
}
__EXPORT
/// Bind a function to a virtual machine.
char* pkpy_vm_bind(pkpy::VM* vm, const char* mod, const char* name, int ret_code){
if(!f_int || !f_float || !f_bool || !f_str || !f_None) return nullptr;
static int kGlobalBindId = 0;
for(int i=0; mod[i]; i++) if(mod[i] == ' ') return nullptr;
for(int i=0; name[i]; i++) if(name[i] == ' ') return nullptr;
std::string f_header = std::string(mod) + '.' + name + '#' + std::to_string(kGlobalBindId++);
pkpy::PyVar obj = vm->_modules.contains(mod) ? vm->_modules[mod] : vm->new_module(mod);
vm->bind_func<-1>(obj, name, [ret_code, f_header](pkpy::VM* vm, const pkpy::Args& args){
pkpy::StrStream ss;
ss << f_header;
for(int i=0; i<args.size(); i++){
ss << ' ';
pkpy::PyVar x = vm->call(args[i], pkpy::__json__);
ss << pkpy::CAST(pkpy::Str&, x);
}
char* packet = strdup(ss.str().c_str());
switch(ret_code){
case 'i': return VAR(f_int(packet));
case 'f': return VAR(f_float(packet));
case 'b': return VAR(f_bool(packet));
case 's': {
char* p = f_str(packet);
if(p == nullptr) return vm->None;
return VAR(p); // no need to free(p)
}
case 'N': f_None(packet); return vm->None;
}
free(packet);
UNREACHABLE();
return vm->None;
});
return strdup(f_header.c_str());
}
}