pocketpy/3rd/numpy/include/xtensor/xaxis_slice_iterator.hpp
Anurag Bhat 86b4fc623c
Merge numpy to pocketpy (#303)
* Merge numpy to pocketpy

* Add CI

* Fix CI
2024-09-02 16:22:41 +08:00

368 lines
11 KiB
C++

/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef XTENSOR_AXIS_SLICE_ITERATOR_HPP
#define XTENSOR_AXIS_SLICE_ITERATOR_HPP
#include "xstrided_view.hpp"
namespace xt
{
/**
* @class xaxis_slice_iterator
* @brief Class for iteration over one-dimensional slices
*
* The xaxis_slice_iterator iterates over one-dimensional slices
* oriented along the specified axis
*
* @tparam CT the closure type of the \ref xexpression
*/
template <class CT>
class xaxis_slice_iterator
{
public:
using self_type = xaxis_slice_iterator<CT>;
using xexpression_type = std::decay_t<CT>;
using size_type = typename xexpression_type::size_type;
using difference_type = typename xexpression_type::difference_type;
using shape_type = typename xexpression_type::shape_type;
using strides_type = typename xexpression_type::strides_type;
using value_type = xstrided_view<CT, shape_type>;
using reference = std::remove_reference_t<apply_cv_t<CT, value_type>>;
using pointer = xtl::xclosure_pointer<std::remove_reference_t<apply_cv_t<CT, value_type>>>;
using iterator_category = std::forward_iterator_tag;
template <class CTA>
xaxis_slice_iterator(CTA&& e, size_type axis);
template <class CTA>
xaxis_slice_iterator(CTA&& e, size_type axis, size_type index, size_type offset);
self_type& operator++();
self_type operator++(int);
reference operator*() const;
pointer operator->() const;
bool equal(const self_type& rhs) const;
private:
using storing_type = xtl::ptr_closure_type_t<CT>;
mutable storing_type p_expression;
size_type m_index;
size_type m_offset;
size_type m_axis_stride;
size_type m_lower_shape;
size_type m_upper_shape;
size_type m_iter_size;
bool m_is_target_axis;
value_type m_sv;
template <class T, class CTA>
std::enable_if_t<std::is_pointer<T>::value, T> get_storage_init(CTA&& e) const;
template <class T, class CTA>
std::enable_if_t<!std::is_pointer<T>::value, T> get_storage_init(CTA&& e) const;
};
template <class CT>
bool operator==(const xaxis_slice_iterator<CT>& lhs, const xaxis_slice_iterator<CT>& rhs);
template <class CT>
bool operator!=(const xaxis_slice_iterator<CT>& lhs, const xaxis_slice_iterator<CT>& rhs);
template <class E>
auto xaxis_slice_begin(E&& e);
template <class E>
auto xaxis_slice_begin(E&& e, typename std::decay_t<E>::size_type axis);
template <class E>
auto xaxis_slice_end(E&& e);
template <class E>
auto xaxis_slice_end(E&& e, typename std::decay_t<E>::size_type axis);
/***************************************
* xaxis_slice_iterator implementation *
***************************************/
template <class CT>
template <class T, class CTA>
inline std::enable_if_t<std::is_pointer<T>::value, T>
xaxis_slice_iterator<CT>::get_storage_init(CTA&& e) const
{
return &e;
}
template <class CT>
template <class T, class CTA>
inline std::enable_if_t<!std::is_pointer<T>::value, T>
xaxis_slice_iterator<CT>::get_storage_init(CTA&& e) const
{
return e;
}
/**
* @name Constructors
*/
//@{
/**
* Constructs an xaxis_slice_iterator
*
* @param e the expression to iterate over
* @param axis the axis to iterate over taking one dimensional slices
*/
template <class CT>
template <class CTA>
inline xaxis_slice_iterator<CT>::xaxis_slice_iterator(CTA&& e, size_type axis)
: xaxis_slice_iterator(std::forward<CTA>(e), axis, 0, e.data_offset())
{
}
/**
* Constructs an xaxis_slice_iterator starting at specified index and offset
*
* @param e the expression to iterate over
* @param axis the axis to iterate over taking one dimensional slices
* @param index the starting index for the iterator
* @param offset the starting offset for the iterator
*/
template <class CT>
template <class CTA>
inline xaxis_slice_iterator<CT>::xaxis_slice_iterator(CTA&& e, size_type axis, size_type index, size_type offset)
: p_expression(get_storage_init<storing_type>(std::forward<CTA>(e)))
, m_index(index)
, m_offset(offset)
, m_axis_stride(static_cast<size_type>(e.strides()[axis]) * (e.shape()[axis] - 1u))
, m_lower_shape(0)
, m_upper_shape(0)
, m_iter_size(0)
, m_is_target_axis(false)
, m_sv(strided_view(
std::forward<CT>(e),
std::forward<shape_type>({e.shape()[axis]}),
std::forward<strides_type>({e.strides()[axis]}),
offset,
e.layout()
))
{
if (e.layout() == layout_type::row_major)
{
m_is_target_axis = axis == e.dimension() - 1;
m_lower_shape = std::accumulate(
e.shape().begin() + axis + 1,
e.shape().end(),
size_t(1),
std::multiplies<>()
);
m_iter_size = std::accumulate(e.shape().begin() + 1, e.shape().end(), size_t(1), std::multiplies<>());
}
else
{
m_is_target_axis = axis == 0;
m_lower_shape = std::accumulate(
e.shape().begin(),
e.shape().begin() + axis,
size_t(1),
std::multiplies<>()
);
m_iter_size = std::accumulate(e.shape().begin(), e.shape().end() - 1, size_t(1), std::multiplies<>());
}
m_upper_shape = m_lower_shape + m_axis_stride;
}
//@}
/**
* @name Increment
*/
//@{
/**
* Increments the iterator to the next position and returns it.
*/
template <class CT>
inline auto xaxis_slice_iterator<CT>::operator++() -> self_type&
{
++m_index;
++m_offset;
auto index_compare = (m_offset % m_iter_size);
if (m_is_target_axis || (m_upper_shape >= index_compare && index_compare >= m_lower_shape))
{
m_offset += m_axis_stride;
}
m_sv.set_offset(m_offset);
return *this;
}
/**
* Makes a copy of the iterator, increments it to the next
* position, and returns the copy.
*/
template <class CT>
inline auto xaxis_slice_iterator<CT>::operator++(int) -> self_type
{
self_type tmp(*this);
++(*this);
return tmp;
}
//@}
/**
* @name Reference
*/
//@{
/**
* Returns the strided view at the current iteration position
*
* @return a strided_view
*/
template <class CT>
inline auto xaxis_slice_iterator<CT>::operator*() const -> reference
{
return m_sv;
}
/**
* Returns a pointer to the strided view at the current iteration position
*
* @return a pointer to a strided_view
*/
template <class CT>
inline auto xaxis_slice_iterator<CT>::operator->() const -> pointer
{
return xtl::closure_pointer(operator*());
}
//@}
/*
* @name Comparisons
*/
//@{
/**
* Checks equality of the xaxis_slice_iterator and \c rhs.
*
* @return true if the iterators are equivalent, false otherwise
*/
template <class CT>
inline bool xaxis_slice_iterator<CT>::equal(const self_type& rhs) const
{
return p_expression == rhs.p_expression && m_index == rhs.m_index;
}
/**
* Checks equality of the iterators.
*
* @return true if the iterators are equivalent, false otherwise
*/
template <class CT>
inline bool operator==(const xaxis_slice_iterator<CT>& lhs, const xaxis_slice_iterator<CT>& rhs)
{
return lhs.equal(rhs);
}
/**
* Checks inequality of the iterators
* @return true if the iterators are different, true otherwise
*/
template <class CT>
inline bool operator!=(const xaxis_slice_iterator<CT>& lhs, const xaxis_slice_iterator<CT>& rhs)
{
return !(lhs == rhs);
}
//@}
/**
* @name Iterators
*/
//@{
/**
* Returns an iterator to the first element of the expression for axis 0
*
* @param e the expession to iterate over
* @return an instance of xaxis_slice_iterator
*/
template <class E>
inline auto axis_slice_begin(E&& e)
{
using return_type = xaxis_slice_iterator<xtl::closure_type_t<E>>;
return return_type(std::forward<E>(e), 0);
}
/**
* Returns an iterator to the first element of the expression for the specified axis
*
* @param e the expession to iterate over
* @param axis the axis to iterate over
* @return an instance of xaxis_slice_iterator
*/
template <class E>
inline auto axis_slice_begin(E&& e, typename std::decay_t<E>::size_type axis)
{
using return_type = xaxis_slice_iterator<xtl::closure_type_t<E>>;
return return_type(std::forward<E>(e), axis, 0, e.data_offset());
}
/**
* Returns an iterator to the element following the last element of
* the expression for axis 0
*
* @param e the expession to iterate over
* @return an instance of xaxis_slice_iterator
*/
template <class E>
inline auto axis_slice_end(E&& e)
{
using return_type = xaxis_slice_iterator<xtl::closure_type_t<E>>;
return return_type(
std::forward<E>(e),
0,
std::accumulate(e.shape().begin() + 1, e.shape().end(), size_t(1), std::multiplies<>()),
e.size()
);
}
/**
* Returns an iterator to the element following the last element of
* the expression for the specified axis
*
* @param e the expression to iterate over
* @param axis the axis to iterate over
* @return an instance of xaxis_slice_iterator
*/
template <class E>
inline auto axis_slice_end(E&& e, typename std::decay_t<E>::size_type axis)
{
using return_type = xaxis_slice_iterator<xtl::closure_type_t<E>>;
auto index_sum = std::accumulate(
e.shape().begin(),
e.shape().begin() + axis,
size_t(1),
std::multiplies<>()
);
return return_type(
std::forward<E>(e),
axis,
std::accumulate(e.shape().begin() + axis + 1, e.shape().end(), index_sum, std::multiplies<>()),
e.size() + axis
);
}
//@}
}
#endif