mirror of
				https://github.com/pocketpy/pocketpy
				synced 2025-10-30 16:30:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1368 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1368 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /***************************************************************************
 | ||
|  * Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht          *
 | ||
|  * Copyright (c) QuantStack                                                 *
 | ||
|  *                                                                          *
 | ||
|  * Distributed under the terms of the BSD 3-Clause License.                 *
 | ||
|  *                                                                          *
 | ||
|  * The full license is in the file LICENSE, distributed with this software. *
 | ||
|  ****************************************************************************/
 | ||
| 
 | ||
| #ifndef XTENSOR_ASSIGN_HPP
 | ||
| #define XTENSOR_ASSIGN_HPP
 | ||
| 
 | ||
| #include <algorithm>
 | ||
| #include <functional>
 | ||
| #include <type_traits>
 | ||
| #include <utility>
 | ||
| 
 | ||
| #include <xtl/xcomplex.hpp>
 | ||
| #include <xtl/xsequence.hpp>
 | ||
| 
 | ||
| #include "xexpression.hpp"
 | ||
| #include "xfunction.hpp"
 | ||
| #include "xiterator.hpp"
 | ||
| #include "xstrides.hpp"
 | ||
| #include "xtensor_config.hpp"
 | ||
| #include "xtensor_forward.hpp"
 | ||
| #include "xutils.hpp"
 | ||
| 
 | ||
| #if defined(XTENSOR_USE_TBB)
 | ||
| #include <tbb/tbb.h>
 | ||
| #endif
 | ||
| 
 | ||
| namespace xt
 | ||
| {
 | ||
| 
 | ||
|     /********************
 | ||
|      * Assign functions *
 | ||
|      ********************/
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     void assign_data(xexpression<E1>& e1, const xexpression<E2>& e2, bool trivial);
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     void assign_xexpression(xexpression<E1>& e1, const xexpression<E2>& e2);
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     void computed_assign(xexpression<E1>& e1, const xexpression<E2>& e2);
 | ||
| 
 | ||
|     template <class E1, class E2, class F>
 | ||
|     void scalar_computed_assign(xexpression<E1>& e1, const E2& e2, F&& f);
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     void assert_compatible_shape(const xexpression<E1>& e1, const xexpression<E2>& e2);
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     void strided_assign(E1& e1, const E2& e2, std::false_type /*disable*/);
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     void strided_assign(E1& e1, const E2& e2, std::true_type /*enable*/);
 | ||
| 
 | ||
|     /************************
 | ||
|      * xexpression_assigner *
 | ||
|      ************************/
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     class xexpression_assigner_base;
 | ||
| 
 | ||
|     template <>
 | ||
|     class xexpression_assigner_base<xtensor_expression_tag>
 | ||
|     {
 | ||
|     public:
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void assign_data(xexpression<E1>& e1, const xexpression<E2>& e2, bool trivial);
 | ||
|     };
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     class xexpression_assigner : public xexpression_assigner_base<Tag>
 | ||
|     {
 | ||
|     public:
 | ||
| 
 | ||
|         using base_type = xexpression_assigner_base<Tag>;
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void assign_xexpression(E1& e1, const E2& e2);
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void computed_assign(xexpression<E1>& e1, const xexpression<E2>& e2);
 | ||
| 
 | ||
|         template <class E1, class E2, class F>
 | ||
|         static void scalar_computed_assign(xexpression<E1>& e1, const E2& e2, F&& f);
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void assert_compatible_shape(const xexpression<E1>& e1, const xexpression<E2>& e2);
 | ||
| 
 | ||
|     private:
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static bool resize(E1& e1, const E2& e2);
 | ||
| 
 | ||
|         template <class E1, class F, class... CT>
 | ||
|         static bool resize(E1& e1, const xfunction<F, CT...>& e2);
 | ||
|     };
 | ||
| 
 | ||
|     /********************
 | ||
|      * stepper_assigner *
 | ||
|      ********************/
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     class stepper_assigner
 | ||
|     {
 | ||
|     public:
 | ||
| 
 | ||
|         using lhs_iterator = typename E1::stepper;
 | ||
|         using rhs_iterator = typename E2::const_stepper;
 | ||
|         using shape_type = typename E1::shape_type;
 | ||
|         using index_type = xindex_type_t<shape_type>;
 | ||
|         using size_type = typename lhs_iterator::size_type;
 | ||
|         using difference_type = typename lhs_iterator::difference_type;
 | ||
| 
 | ||
|         stepper_assigner(E1& e1, const E2& e2);
 | ||
| 
 | ||
|         void run();
 | ||
| 
 | ||
|         void step(size_type i);
 | ||
|         void step(size_type i, size_type n);
 | ||
|         void reset(size_type i);
 | ||
| 
 | ||
|         void to_end(layout_type);
 | ||
| 
 | ||
|     private:
 | ||
| 
 | ||
|         E1& m_e1;
 | ||
| 
 | ||
|         lhs_iterator m_lhs;
 | ||
|         rhs_iterator m_rhs;
 | ||
| 
 | ||
|         index_type m_index;
 | ||
|     };
 | ||
| 
 | ||
|     /*******************
 | ||
|      * linear_assigner *
 | ||
|      *******************/
 | ||
| 
 | ||
|     template <bool simd_assign>
 | ||
|     class linear_assigner
 | ||
|     {
 | ||
|     public:
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void run(E1& e1, const E2& e2);
 | ||
|     };
 | ||
| 
 | ||
|     template <>
 | ||
|     class linear_assigner<false>
 | ||
|     {
 | ||
|     public:
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void run(E1& e1, const E2& e2);
 | ||
| 
 | ||
|     private:
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void run_impl(E1& e1, const E2& e2, std::true_type);
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         static void run_impl(E1& e1, const E2& e2, std::false_type);
 | ||
|     };
 | ||
| 
 | ||
|     /*************************
 | ||
|      * strided_loop_assigner *
 | ||
|      *************************/
 | ||
| 
 | ||
|     namespace strided_assign_detail
 | ||
|     {
 | ||
|         struct loop_sizes_t
 | ||
|         {
 | ||
|             bool can_do_strided_assign;
 | ||
|             bool is_row_major;
 | ||
|             std::size_t inner_loop_size;
 | ||
|             std::size_t outer_loop_size;
 | ||
|             std::size_t cut;
 | ||
|             std::size_t dimension;
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     template <bool simd>
 | ||
|     class strided_loop_assigner
 | ||
|     {
 | ||
|     public:
 | ||
| 
 | ||
|         using loop_sizes_t = strided_assign_detail::loop_sizes_t;
 | ||
|         // is_row_major, inner_loop_size, outer_loop_size, cut
 | ||
|         template <class E1, class E2>
 | ||
|         static void run(E1& e1, const E2& e2, const loop_sizes_t& loop_sizes);
 | ||
|         template <class E1, class E2>
 | ||
|         static loop_sizes_t get_loop_sizes(E1& e1, const E2& e2);
 | ||
|         template <class E1, class E2>
 | ||
|         static void run(E1& e1, const E2& e2);
 | ||
|     };
 | ||
| 
 | ||
|     /***********************************
 | ||
|      * Assign functions implementation *
 | ||
|      ***********************************/
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void assign_data(xexpression<E1>& e1, const xexpression<E2>& e2, bool trivial)
 | ||
|     {
 | ||
|         using tag = xexpression_tag_t<E1, E2>;
 | ||
|         xexpression_assigner<tag>::assign_data(e1, e2, trivial);
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void assign_xexpression(xexpression<E1>& e1, const xexpression<E2>& e2)
 | ||
|     {
 | ||
|         xtl::mpl::static_if<has_assign_to<E1, E2>::value>(
 | ||
|             [&](auto self)
 | ||
|             {
 | ||
|                 self(e2).derived_cast().assign_to(e1);
 | ||
|             },
 | ||
|             /*else*/
 | ||
|             [&](auto /*self*/)
 | ||
|             {
 | ||
|                 using tag = xexpression_tag_t<E1, E2>;
 | ||
|                 xexpression_assigner<tag>::assign_xexpression(e1, e2);
 | ||
|             }
 | ||
|         );
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void computed_assign(xexpression<E1>& e1, const xexpression<E2>& e2)
 | ||
|     {
 | ||
|         using tag = xexpression_tag_t<E1, E2>;
 | ||
|         xexpression_assigner<tag>::computed_assign(e1, e2);
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2, class F>
 | ||
|     inline void scalar_computed_assign(xexpression<E1>& e1, const E2& e2, F&& f)
 | ||
|     {
 | ||
|         using tag = xexpression_tag_t<E1, E2>;
 | ||
|         xexpression_assigner<tag>::scalar_computed_assign(e1, e2, std::forward<F>(f));
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void assert_compatible_shape(const xexpression<E1>& e1, const xexpression<E2>& e2)
 | ||
|     {
 | ||
|         using tag = xexpression_tag_t<E1, E2>;
 | ||
|         xexpression_assigner<tag>::assert_compatible_shape(e1, e2);
 | ||
|     }
 | ||
| 
 | ||
|     /***************************************
 | ||
|      * xexpression_assigner implementation *
 | ||
|      ***************************************/
 | ||
| 
 | ||
|     namespace detail
 | ||
|     {
 | ||
|         template <class E1, class E2>
 | ||
|         constexpr bool linear_static_layout()
 | ||
|         {
 | ||
|             // A row_major or column_major container with a dimension <= 1 is computed as
 | ||
|             // layout any, leading to some performance improvements, for example when
 | ||
|             // assigning a col-major vector to a row-major vector etc
 | ||
|             return compute_layout(
 | ||
|                        select_layout<E1::static_layout, typename E1::shape_type>::value,
 | ||
|                        select_layout<E2::static_layout, typename E2::shape_type>::value
 | ||
|                    )
 | ||
|                    != layout_type::dynamic;
 | ||
|         }
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         inline auto is_linear_assign(const E1& e1, const E2& e2)
 | ||
|             -> std::enable_if_t<has_strides<E1>::value, bool>
 | ||
|         {
 | ||
|             return (E1::contiguous_layout && E2::contiguous_layout && linear_static_layout<E1, E2>())
 | ||
|                    || (e1.is_contiguous() && e2.has_linear_assign(e1.strides()));
 | ||
|         }
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         inline auto is_linear_assign(const E1&, const E2&) -> std::enable_if_t<!has_strides<E1>::value, bool>
 | ||
|         {
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         template <class E1, class E2>
 | ||
|         inline bool linear_dynamic_layout(const E1& e1, const E2& e2)
 | ||
|         {
 | ||
|             return e1.is_contiguous() && e2.is_contiguous()
 | ||
|                    && compute_layout(e1.layout(), e2.layout()) != layout_type::dynamic;
 | ||
|         }
 | ||
| 
 | ||
|         template <class E, class = void>
 | ||
|         struct has_step_leading : std::false_type
 | ||
|         {
 | ||
|         };
 | ||
| 
 | ||
|         template <class E>
 | ||
|         struct has_step_leading<E, void_t<decltype(std::declval<E>().step_leading())>> : std::true_type
 | ||
|         {
 | ||
|         };
 | ||
| 
 | ||
|         template <class T>
 | ||
|         struct use_strided_loop
 | ||
|         {
 | ||
|             static constexpr bool stepper_deref()
 | ||
|             {
 | ||
|                 return std::is_reference<typename T::stepper::reference>::value;
 | ||
|             }
 | ||
| 
 | ||
|             static constexpr bool value = has_strides<T>::value
 | ||
|                                           && has_step_leading<typename T::stepper>::value && stepper_deref();
 | ||
|         };
 | ||
| 
 | ||
|         template <class T>
 | ||
|         struct use_strided_loop<xscalar<T>>
 | ||
|         {
 | ||
|             static constexpr bool value = true;
 | ||
|         };
 | ||
| 
 | ||
|         template <class F, class... CT>
 | ||
|         struct use_strided_loop<xfunction<F, CT...>>
 | ||
|         {
 | ||
|             static constexpr bool value = xtl::conjunction<use_strided_loop<std::decay_t<CT>>...>::value;
 | ||
|         };
 | ||
| 
 | ||
|         /**
 | ||
|          * Considering the assignment LHS = RHS, if the requested value type used for
 | ||
|          * loading simd from RHS is not complex while LHS value_type is complex,
 | ||
|          * the assignment fails. The reason is that SIMD batches of complex values cannot
 | ||
|          * be implicitly instantiated from batches of scalar values.
 | ||
|          * Making the constructor implicit does not fix the issue since in the end,
 | ||
|          * the assignment is done with vec.store(buffer) where vec is a batch of scalars
 | ||
|          * and buffer an array of complex. SIMD batches of scalars do not provide overloads
 | ||
|          * of store that accept buffer of complex values and that SHOULD NOT CHANGE.
 | ||
|          * Load and store overloads must accept SCALAR BUFFERS ONLY.
 | ||
|          * Therefore, the solution is to explicitly force the instantiation of complex
 | ||
|          * batches in the assignment mechanism. A common situation that triggers this
 | ||
|          * issue is:
 | ||
|          * xt::xarray<double> rhs = { 1, 2, 3 };
 | ||
|          * xt::xarray<std::complex<double>> lhs = rhs;
 | ||
|          */
 | ||
|         template <class T1, class T2>
 | ||
|         struct conditional_promote_to_complex
 | ||
|         {
 | ||
|             static constexpr bool cond = xtl::is_gen_complex<T1>::value && !xtl::is_gen_complex<T2>::value;
 | ||
|             // Alternative: use std::complex<T2> or xcomplex<T2, T2, bool> depending on T1
 | ||
|             using type = std::conditional_t<cond, T1, T2>;
 | ||
|         };
 | ||
| 
 | ||
|         template <class T1, class T2>
 | ||
|         using conditional_promote_to_complex_t = typename conditional_promote_to_complex<T1, T2>::type;
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     class xassign_traits
 | ||
|     {
 | ||
|     private:
 | ||
| 
 | ||
|         using e1_value_type = typename E1::value_type;
 | ||
|         using e2_value_type = typename E2::value_type;
 | ||
| 
 | ||
|         template <class T>
 | ||
|         using is_bool = std::is_same<T, bool>;
 | ||
| 
 | ||
|         static constexpr bool is_bool_conversion()
 | ||
|         {
 | ||
|             return is_bool<e2_value_type>::value && !is_bool<e1_value_type>::value;
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool contiguous_layout()
 | ||
|         {
 | ||
|             return E1::contiguous_layout && E2::contiguous_layout;
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool convertible_types()
 | ||
|         {
 | ||
|             return std::is_convertible<e2_value_type, e1_value_type>::value && !is_bool_conversion();
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool use_xsimd()
 | ||
|         {
 | ||
|             return xt_simd::simd_traits<int8_t>::size > 1;
 | ||
|         }
 | ||
| 
 | ||
|         template <class T>
 | ||
|         static constexpr bool simd_size_impl()
 | ||
|         {
 | ||
|             return xt_simd::simd_traits<T>::size > 1 || (is_bool<T>::value && use_xsimd());
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool simd_size()
 | ||
|         {
 | ||
|             return simd_size_impl<e1_value_type>() && simd_size_impl<e2_value_type>();
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool simd_interface()
 | ||
|         {
 | ||
|             return has_simd_interface<E1, requested_value_type>()
 | ||
|                    && has_simd_interface<E2, requested_value_type>();
 | ||
|         }
 | ||
| 
 | ||
|     public:
 | ||
| 
 | ||
|         // constexpr methods instead of constexpr data members avoid the need of definitions at namespace
 | ||
|         // scope of these data members (since they are odr-used).
 | ||
| 
 | ||
|         static constexpr bool simd_assign()
 | ||
|         {
 | ||
|             return convertible_types() && simd_size() && simd_interface();
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool linear_assign(const E1& e1, const E2& e2, bool trivial)
 | ||
|         {
 | ||
|             return trivial && detail::is_linear_assign(e1, e2);
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool strided_assign()
 | ||
|         {
 | ||
|             return detail::use_strided_loop<E1>::value && detail::use_strided_loop<E2>::value;
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool simd_linear_assign()
 | ||
|         {
 | ||
|             return contiguous_layout() && simd_assign();
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool simd_strided_assign()
 | ||
|         {
 | ||
|             return strided_assign() && simd_assign();
 | ||
|         }
 | ||
| 
 | ||
|         static constexpr bool simd_linear_assign(const E1& e1, const E2& e2)
 | ||
|         {
 | ||
|             return simd_assign() && detail::linear_dynamic_layout(e1, e2);
 | ||
|         }
 | ||
| 
 | ||
|         using e2_requested_value_type = std::
 | ||
|             conditional_t<is_bool<e2_value_type>::value, typename E2::bool_load_type, e2_value_type>;
 | ||
|         using requested_value_type = detail::conditional_promote_to_complex_t<e1_value_type, e2_requested_value_type>;
 | ||
|     };
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void xexpression_assigner_base<xtensor_expression_tag>::assign_data(
 | ||
|         xexpression<E1>& e1,
 | ||
|         const xexpression<E2>& e2,
 | ||
|         bool trivial
 | ||
|     )
 | ||
|     {
 | ||
|         E1& de1 = e1.derived_cast();
 | ||
|         const E2& de2 = e2.derived_cast();
 | ||
|         using traits = xassign_traits<E1, E2>;
 | ||
| 
 | ||
|         bool linear_assign = traits::linear_assign(de1, de2, trivial);
 | ||
|         constexpr bool simd_assign = traits::simd_assign();
 | ||
|         constexpr bool simd_linear_assign = traits::simd_linear_assign();
 | ||
|         constexpr bool simd_strided_assign = traits::simd_strided_assign();
 | ||
|         if (linear_assign)
 | ||
|         {
 | ||
|             if (simd_linear_assign || traits::simd_linear_assign(de1, de2))
 | ||
|             {
 | ||
|                 // Do not use linear_assigner<true> here since it will make the compiler
 | ||
|                 // instantiate this branch even if the runtime condition is false, resulting
 | ||
|                 // in compilation error for expressions that do not provide a SIMD interface.
 | ||
|                 // simd_assign is true if simd_linear_assign() or simd_linear_assign(de1, de2)
 | ||
|                 // is true.
 | ||
|                 linear_assigner<simd_assign>::run(de1, de2);
 | ||
|             }
 | ||
|             else
 | ||
|             {
 | ||
|                 linear_assigner<false>::run(de1, de2);
 | ||
|             }
 | ||
|         }
 | ||
|         else if (simd_strided_assign)
 | ||
|         {
 | ||
|             strided_loop_assigner<simd_strided_assign>::run(de1, de2);
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             stepper_assigner<E1, E2, default_assignable_layout(E1::static_layout)>(de1, de2).run();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void xexpression_assigner<Tag>::assign_xexpression(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         bool trivial_broadcast = resize(e1.derived_cast(), e2.derived_cast());
 | ||
|         base_type::assign_data(e1, e2, trivial_broadcast);
 | ||
|     }
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void xexpression_assigner<Tag>::computed_assign(xexpression<E1>& e1, const xexpression<E2>& e2)
 | ||
|     {
 | ||
|         using shape_type = typename E1::shape_type;
 | ||
|         using comperator_type = std::greater<typename shape_type::value_type>;
 | ||
| 
 | ||
|         using size_type = typename E1::size_type;
 | ||
| 
 | ||
|         E1& de1 = e1.derived_cast();
 | ||
|         const E2& de2 = e2.derived_cast();
 | ||
| 
 | ||
|         size_type dim2 = de2.dimension();
 | ||
|         shape_type shape = uninitialized_shape<shape_type>(dim2);
 | ||
| 
 | ||
|         bool trivial_broadcast = de2.broadcast_shape(shape, true);
 | ||
| 
 | ||
|         auto&& de1_shape = de1.shape();
 | ||
|         if (dim2 > de1.dimension()
 | ||
|             || std::lexicographical_compare(
 | ||
|                 shape.begin(),
 | ||
|                 shape.end(),
 | ||
|                 de1_shape.begin(),
 | ||
|                 de1_shape.end(),
 | ||
|                 comperator_type()
 | ||
|             ))
 | ||
|         {
 | ||
|             typename E1::temporary_type tmp(shape);
 | ||
|             base_type::assign_data(tmp, e2, trivial_broadcast);
 | ||
|             de1.assign_temporary(std::move(tmp));
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             base_type::assign_data(e1, e2, trivial_broadcast);
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     template <class E1, class E2, class F>
 | ||
|     inline void xexpression_assigner<Tag>::scalar_computed_assign(xexpression<E1>& e1, const E2& e2, F&& f)
 | ||
|     {
 | ||
|         E1& d = e1.derived_cast();
 | ||
|         using size_type = typename E1::size_type;
 | ||
|         auto dst = d.storage().begin();
 | ||
|         for (size_type i = d.size(); i > 0; --i)
 | ||
|         {
 | ||
|             *dst = f(*dst, e2);
 | ||
|             ++dst;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void
 | ||
|     xexpression_assigner<Tag>::assert_compatible_shape(const xexpression<E1>& e1, const xexpression<E2>& e2)
 | ||
|     {
 | ||
|         const E1& de1 = e1.derived_cast();
 | ||
|         const E2& de2 = e2.derived_cast();
 | ||
|         if (!broadcastable(de2.shape(), de1.shape()))
 | ||
|         {
 | ||
|             throw_broadcast_error(de2.shape(), de1.shape());
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     namespace detail
 | ||
|     {
 | ||
|         template <bool B, class... CT>
 | ||
|         struct static_trivial_broadcast;
 | ||
| 
 | ||
|         template <class... CT>
 | ||
|         struct static_trivial_broadcast<true, CT...>
 | ||
|         {
 | ||
|             static constexpr bool value = detail::promote_index<typename std::decay_t<CT>::shape_type...>::value;
 | ||
|         };
 | ||
| 
 | ||
|         template <class... CT>
 | ||
|         struct static_trivial_broadcast<false, CT...>
 | ||
|         {
 | ||
|             static constexpr bool value = false;
 | ||
|         };
 | ||
|     }
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     template <class E1, class E2>
 | ||
|     inline bool xexpression_assigner<Tag>::resize(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         // If our RHS is not a xfunction, we know that the RHS is at least potentially trivial
 | ||
|         // We check the strides of the RHS in detail::is_trivial_broadcast to see if they match up!
 | ||
|         // So we can skip a shape copy and a call to broadcast_shape(...)
 | ||
|         e1.resize(e2.shape());
 | ||
|         return true;
 | ||
|     }
 | ||
| 
 | ||
|     template <class Tag>
 | ||
|     template <class E1, class F, class... CT>
 | ||
|     inline bool xexpression_assigner<Tag>::resize(E1& e1, const xfunction<F, CT...>& e2)
 | ||
|     {
 | ||
|         return xtl::mpl::static_if<detail::is_fixed<typename xfunction<F, CT...>::shape_type>::value>(
 | ||
|             [&](auto /*self*/)
 | ||
|             {
 | ||
|                 /*
 | ||
|                  * If the shape of the xfunction is statically known, we can compute the broadcast triviality
 | ||
|                  * at compile time plus we can resize right away.
 | ||
|                  */
 | ||
|                 // resize in case LHS is not a fixed size container. If it is, this is a NOP
 | ||
|                 e1.resize(typename xfunction<F, CT...>::shape_type{});
 | ||
|                 return detail::static_trivial_broadcast<
 | ||
|                     detail::is_fixed<typename xfunction<F, CT...>::shape_type>::value,
 | ||
|                     CT...>::value;
 | ||
|             },
 | ||
|             /* else */
 | ||
|             [&](auto /*self*/)
 | ||
|             {
 | ||
|                 using index_type = xindex_type_t<typename E1::shape_type>;
 | ||
|                 using size_type = typename E1::size_type;
 | ||
|                 size_type size = e2.dimension();
 | ||
|                 index_type shape = uninitialized_shape<index_type>(size);
 | ||
|                 bool trivial_broadcast = e2.broadcast_shape(shape, true);
 | ||
|                 e1.resize(std::move(shape));
 | ||
|                 return trivial_broadcast;
 | ||
|             }
 | ||
|         );
 | ||
|     }
 | ||
| 
 | ||
|     /***********************************
 | ||
|      * stepper_assigner implementation *
 | ||
|      ***********************************/
 | ||
| 
 | ||
|     template <class FROM, class TO>
 | ||
|     struct is_narrowing_conversion
 | ||
|     {
 | ||
|         using argument_type = std::decay_t<FROM>;
 | ||
|         using result_type = std::decay_t<TO>;
 | ||
| 
 | ||
|         static const bool value = xtl::is_arithmetic<result_type>::value
 | ||
|                                   && (sizeof(result_type) < sizeof(argument_type)
 | ||
|                                       || (xtl::is_integral<result_type>::value
 | ||
|                                           && std::is_floating_point<argument_type>::value));
 | ||
|     };
 | ||
| 
 | ||
|     template <class FROM, class TO>
 | ||
|     struct has_sign_conversion
 | ||
|     {
 | ||
|         using argument_type = std::decay_t<FROM>;
 | ||
|         using result_type = std::decay_t<TO>;
 | ||
| 
 | ||
|         static const bool value = xtl::is_signed<argument_type>::value != xtl::is_signed<result_type>::value;
 | ||
|     };
 | ||
| 
 | ||
|     template <class FROM, class TO>
 | ||
|     struct has_assign_conversion
 | ||
|     {
 | ||
|         using argument_type = std::decay_t<FROM>;
 | ||
|         using result_type = std::decay_t<TO>;
 | ||
| 
 | ||
|         static const bool value = is_narrowing_conversion<argument_type, result_type>::value
 | ||
|                                   || has_sign_conversion<argument_type, result_type>::value;
 | ||
|     };
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     inline stepper_assigner<E1, E2, L>::stepper_assigner(E1& e1, const E2& e2)
 | ||
|         : m_e1(e1)
 | ||
|         , m_lhs(e1.stepper_begin(e1.shape()))
 | ||
|         , m_rhs(e2.stepper_begin(e1.shape()))
 | ||
|         , m_index(xtl::make_sequence<index_type>(e1.shape().size(), size_type(0)))
 | ||
|     {
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     inline void stepper_assigner<E1, E2, L>::run()
 | ||
|     {
 | ||
|         using tmp_size_type = typename E1::size_type;
 | ||
|         using argument_type = std::decay_t<decltype(*m_rhs)>;
 | ||
|         using result_type = std::decay_t<decltype(*m_lhs)>;
 | ||
|         constexpr bool needs_cast = has_assign_conversion<argument_type, result_type>::value;
 | ||
| 
 | ||
|         tmp_size_type s = m_e1.size();
 | ||
|         for (tmp_size_type i = 0; i < s; ++i)
 | ||
|         {
 | ||
|             *m_lhs = conditional_cast<needs_cast, result_type>(*m_rhs);
 | ||
|             stepper_tools<L>::increment_stepper(*this, m_index, m_e1.shape());
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     inline void stepper_assigner<E1, E2, L>::step(size_type i)
 | ||
|     {
 | ||
|         m_lhs.step(i);
 | ||
|         m_rhs.step(i);
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     inline void stepper_assigner<E1, E2, L>::step(size_type i, size_type n)
 | ||
|     {
 | ||
|         m_lhs.step(i, n);
 | ||
|         m_rhs.step(i, n);
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     inline void stepper_assigner<E1, E2, L>::reset(size_type i)
 | ||
|     {
 | ||
|         m_lhs.reset(i);
 | ||
|         m_rhs.reset(i);
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2, layout_type L>
 | ||
|     inline void stepper_assigner<E1, E2, L>::to_end(layout_type l)
 | ||
|     {
 | ||
|         m_lhs.to_end(l);
 | ||
|         m_rhs.to_end(l);
 | ||
|     }
 | ||
| 
 | ||
|     /**********************************
 | ||
|      * linear_assigner implementation *
 | ||
|      **********************************/
 | ||
| 
 | ||
|     template <bool simd_assign>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void linear_assigner<simd_assign>::run(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         using lhs_align_mode = xt_simd::container_alignment_t<E1>;
 | ||
|         constexpr bool is_aligned = std::is_same<lhs_align_mode, aligned_mode>::value;
 | ||
|         using rhs_align_mode = std::conditional_t<is_aligned, inner_aligned_mode, unaligned_mode>;
 | ||
|         using e1_value_type = typename E1::value_type;
 | ||
|         using e2_value_type = typename E2::value_type;
 | ||
|         using value_type = typename xassign_traits<E1, E2>::requested_value_type;
 | ||
|         using simd_type = xt_simd::simd_type<value_type>;
 | ||
|         using size_type = typename E1::size_type;
 | ||
|         size_type size = e1.size();
 | ||
|         constexpr size_type simd_size = simd_type::size;
 | ||
|         constexpr bool needs_cast = has_assign_conversion<e1_value_type, e2_value_type>::value;
 | ||
| 
 | ||
|         size_type align_begin = is_aligned ? 0 : xt_simd::get_alignment_offset(e1.data(), size, simd_size);
 | ||
|         size_type align_end = align_begin + ((size - align_begin) & ~(simd_size - 1));
 | ||
| 
 | ||
|         for (size_type i = 0; i < align_begin; ++i)
 | ||
|         {
 | ||
|             e1.data_element(i) = conditional_cast<needs_cast, e1_value_type>(e2.data_element(i));
 | ||
|         }
 | ||
| 
 | ||
| #if defined(XTENSOR_USE_TBB)
 | ||
|         if (size >= XTENSOR_TBB_THRESHOLD)
 | ||
|         {
 | ||
|             tbb::static_partitioner ap;
 | ||
|             tbb::parallel_for(
 | ||
|                 align_begin,
 | ||
|                 align_end,
 | ||
|                 simd_size,
 | ||
|                 [&e1, &e2](size_t i)
 | ||
|                 {
 | ||
|                     e1.template store_simd<lhs_align_mode>(
 | ||
|                         i,
 | ||
|                         e2.template load_simd<rhs_align_mode, value_type>(i)
 | ||
|                     );
 | ||
|                 },
 | ||
|                 ap
 | ||
|             );
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             for (size_type i = align_begin; i < align_end; i += simd_size)
 | ||
|             {
 | ||
|                 e1.template store_simd<lhs_align_mode>(i, e2.template load_simd<rhs_align_mode, value_type>(i));
 | ||
|             }
 | ||
|         }
 | ||
| #elif defined(XTENSOR_USE_OPENMP)
 | ||
|         if (size >= size_type(XTENSOR_OPENMP_TRESHOLD))
 | ||
|         {
 | ||
| #pragma omp parallel for default(none) shared(align_begin, align_end, e1, e2)
 | ||
| #ifndef _WIN32
 | ||
|             for (size_type i = align_begin; i < align_end; i += simd_size)
 | ||
|             {
 | ||
|                 e1.template store_simd<lhs_align_mode>(i, e2.template load_simd<rhs_align_mode, value_type>(i));
 | ||
|             }
 | ||
| #else
 | ||
|             for (auto i = static_cast<std::ptrdiff_t>(align_begin); i < static_cast<std::ptrdiff_t>(align_end);
 | ||
|                  i += static_cast<std::ptrdiff_t>(simd_size))
 | ||
|             {
 | ||
|                 size_type ui = static_cast<size_type>(i);
 | ||
|                 e1.template store_simd<lhs_align_mode>(ui, e2.template load_simd<rhs_align_mode, value_type>(ui));
 | ||
|             }
 | ||
| #endif
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             for (size_type i = align_begin; i < align_end; i += simd_size)
 | ||
|             {
 | ||
|                 e1.template store_simd<lhs_align_mode>(i, e2.template load_simd<rhs_align_mode, value_type>(i));
 | ||
|             }
 | ||
|         }
 | ||
| #else
 | ||
|         for (size_type i = align_begin; i < align_end; i += simd_size)
 | ||
|         {
 | ||
|             e1.template store_simd<lhs_align_mode>(i, e2.template load_simd<rhs_align_mode, value_type>(i));
 | ||
|         }
 | ||
| #endif
 | ||
|         for (size_type i = align_end; i < size; ++i)
 | ||
|         {
 | ||
|             e1.data_element(i) = conditional_cast<needs_cast, e1_value_type>(e2.data_element(i));
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void linear_assigner<false>::run(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         using is_convertible = std::
 | ||
|             is_convertible<typename std::decay_t<E2>::value_type, typename std::decay_t<E1>::value_type>;
 | ||
|         // If the types are not compatible, this function is still instantiated but never called.
 | ||
|         // To avoid compilation problems in effectively unused code trivial_assigner_run_impl is
 | ||
|         // empty in this case.
 | ||
|         run_impl(e1, e2, is_convertible());
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void linear_assigner<false>::run_impl(E1& e1, const E2& e2, std::true_type /*is_convertible*/)
 | ||
|     {
 | ||
|         using value_type = typename E1::value_type;
 | ||
|         using size_type = typename E1::size_type;
 | ||
|         auto src = linear_begin(e2);
 | ||
|         auto dst = linear_begin(e1);
 | ||
|         size_type n = e1.size();
 | ||
| #if defined(XTENSOR_USE_TBB)
 | ||
|         tbb::static_partitioner sp;
 | ||
|         tbb::parallel_for(
 | ||
|             std::ptrdiff_t(0),
 | ||
|             static_cast<std::ptrdiff_t>(n),
 | ||
|             [&](std::ptrdiff_t i)
 | ||
|             {
 | ||
|                 *(dst + i) = static_cast<value_type>(*(src + i));
 | ||
|             },
 | ||
|             sp
 | ||
|         );
 | ||
| #elif defined(XTENSOR_USE_OPENMP)
 | ||
|         if (n >= XTENSOR_OPENMP_TRESHOLD)
 | ||
|         {
 | ||
| #pragma omp parallel for default(none) shared(src, dst, n)
 | ||
|             for (std::ptrdiff_t i = std::ptrdiff_t(0); i < static_cast<std::ptrdiff_t>(n); i++)
 | ||
|             {
 | ||
|                 *(dst + i) = static_cast<value_type>(*(src + i));
 | ||
|             }
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             for (; n > size_type(0); --n)
 | ||
|             {
 | ||
|                 *dst = static_cast<value_type>(*src);
 | ||
|                 ++src;
 | ||
|                 ++dst;
 | ||
|             }
 | ||
|         }
 | ||
| #else
 | ||
|         for (; n > size_type(0); --n)
 | ||
|         {
 | ||
|             *dst = static_cast<value_type>(*src);
 | ||
|             ++src;
 | ||
|             ++dst;
 | ||
|         }
 | ||
| #endif
 | ||
|     }
 | ||
| 
 | ||
|     template <class E1, class E2>
 | ||
|     inline void linear_assigner<false>::run_impl(E1&, const E2&, std::false_type /*is_convertible*/)
 | ||
|     {
 | ||
|         XTENSOR_PRECONDITION(false, "Internal error: linear_assigner called with unrelated types.");
 | ||
|     }
 | ||
| 
 | ||
|     /****************************************
 | ||
|      * strided_loop_assigner implementation *
 | ||
|      ****************************************/
 | ||
| 
 | ||
|     namespace strided_assign_detail
 | ||
|     {
 | ||
|         template <layout_type layout>
 | ||
|         struct idx_tools;
 | ||
| 
 | ||
|         template <>
 | ||
|         struct idx_tools<layout_type::row_major>
 | ||
|         {
 | ||
|             template <class T>
 | ||
|             static void next_idx(T& outer_index, T& outer_shape)
 | ||
|             {
 | ||
|                 auto i = outer_index.size();
 | ||
|                 for (; i > 0; --i)
 | ||
|                 {
 | ||
|                     if (outer_index[i - 1] + 1 >= outer_shape[i - 1])
 | ||
|                     {
 | ||
|                         outer_index[i - 1] = 0;
 | ||
|                     }
 | ||
|                     else
 | ||
|                     {
 | ||
|                         outer_index[i - 1]++;
 | ||
|                         break;
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             template <class T>
 | ||
|             static void nth_idx(size_t n, T& outer_index, const T& outer_shape)
 | ||
|             {
 | ||
|                 dynamic_shape<std::size_t> stride_sizes;
 | ||
|                 xt::resize_container(stride_sizes, outer_shape.size());
 | ||
|                 // compute strides
 | ||
|                 using size_type = typename T::size_type;
 | ||
|                 for (size_type i = outer_shape.size(); i > 0; i--)
 | ||
|                 {
 | ||
|                     stride_sizes[i - 1] = (i == outer_shape.size()) ? 1 : stride_sizes[i] * outer_shape[i];
 | ||
|                 }
 | ||
| 
 | ||
|                 // compute index
 | ||
|                 for (size_type i = 0; i < outer_shape.size(); i++)
 | ||
|                 {
 | ||
|                     auto d_idx = n / stride_sizes[i];
 | ||
|                     outer_index[i] = d_idx;
 | ||
|                     n -= d_idx * stride_sizes[i];
 | ||
|                 }
 | ||
|             }
 | ||
|         };
 | ||
| 
 | ||
|         template <>
 | ||
|         struct idx_tools<layout_type::column_major>
 | ||
|         {
 | ||
|             template <class T>
 | ||
|             static void next_idx(T& outer_index, T& outer_shape)
 | ||
|             {
 | ||
|                 using size_type = typename T::size_type;
 | ||
|                 size_type i = 0;
 | ||
|                 auto sz = outer_index.size();
 | ||
|                 for (; i < sz; ++i)
 | ||
|                 {
 | ||
|                     if (outer_index[i] + 1 >= outer_shape[i])
 | ||
|                     {
 | ||
|                         outer_index[i] = 0;
 | ||
|                     }
 | ||
|                     else
 | ||
|                     {
 | ||
|                         outer_index[i]++;
 | ||
|                         break;
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|             template <class T>
 | ||
|             static void nth_idx(size_t n, T& outer_index, const T& outer_shape)
 | ||
|             {
 | ||
|                 dynamic_shape<std::size_t> stride_sizes;
 | ||
|                 xt::resize_container(stride_sizes, outer_shape.size());
 | ||
| 
 | ||
|                 using size_type = typename T::size_type;
 | ||
| 
 | ||
|                 // compute required strides
 | ||
|                 for (size_type i = 0; i < outer_shape.size(); i++)
 | ||
|                 {
 | ||
|                     stride_sizes[i] = (i == 0) ? 1 : stride_sizes[i - 1] * outer_shape[i - 1];
 | ||
|                 }
 | ||
| 
 | ||
|                 // compute index
 | ||
|                 for (size_type i = outer_shape.size(); i > 0;)
 | ||
|                 {
 | ||
|                     i--;
 | ||
|                     auto d_idx = n / stride_sizes[i];
 | ||
|                     outer_index[i] = d_idx;
 | ||
|                     n -= d_idx * stride_sizes[i];
 | ||
|                 }
 | ||
|             }
 | ||
|         };
 | ||
| 
 | ||
|         template <layout_type L, class S>
 | ||
|         struct check_strides_functor
 | ||
|         {
 | ||
|             using strides_type = S;
 | ||
| 
 | ||
|             check_strides_functor(const S& strides)
 | ||
|                 : m_cut(L == layout_type::row_major ? 0 : strides.size())
 | ||
|                 , m_strides(strides)
 | ||
|             {
 | ||
|             }
 | ||
| 
 | ||
|             template <class T, layout_type LE = L>
 | ||
|             std::enable_if_t<LE == layout_type::row_major, std::size_t> operator()(const T& el)
 | ||
|             {
 | ||
|                 // All dimenions less than var have differing strides
 | ||
|                 auto var = check_strides_overlap<layout_type::row_major>::get(m_strides, el.strides());
 | ||
|                 if (var > m_cut)
 | ||
|                 {
 | ||
|                     m_cut = var;
 | ||
|                 }
 | ||
|                 return m_cut;
 | ||
|             }
 | ||
| 
 | ||
|             template <class T, layout_type LE = L>
 | ||
|             std::enable_if_t<LE == layout_type::column_major, std::size_t> operator()(const T& el)
 | ||
|             {
 | ||
|                 auto var = check_strides_overlap<layout_type::column_major>::get(m_strides, el.strides());
 | ||
|                 // All dimensions >= var have differing strides
 | ||
|                 if (var < m_cut)
 | ||
|                 {
 | ||
|                     m_cut = var;
 | ||
|                 }
 | ||
|                 return m_cut;
 | ||
|             }
 | ||
| 
 | ||
|             template <class T>
 | ||
|             std::size_t operator()(const xt::xscalar<T>& /*el*/)
 | ||
|             {
 | ||
|                 return m_cut;
 | ||
|             }
 | ||
| 
 | ||
|             template <class F, class... CT>
 | ||
|             std::size_t operator()(const xt::xfunction<F, CT...>& xf)
 | ||
|             {
 | ||
|                 xt::for_each(*this, xf.arguments());
 | ||
|                 return m_cut;
 | ||
|             }
 | ||
| 
 | ||
|         private:
 | ||
| 
 | ||
|             std::size_t m_cut;
 | ||
|             const strides_type& m_strides;
 | ||
|         };
 | ||
| 
 | ||
|         template <bool possible = true, class E1, class E2, std::enable_if_t<!has_strides<E1>::value || !possible, bool> = true>
 | ||
|         loop_sizes_t get_loop_sizes(const E1& e1, const E2&)
 | ||
|         {
 | ||
|             return {false, true, 1, e1.size(), e1.dimension(), e1.dimension()};
 | ||
|         }
 | ||
| 
 | ||
|         template <bool possible = true, class E1, class E2, std::enable_if_t<has_strides<E1>::value && possible, bool> = true>
 | ||
|         loop_sizes_t get_loop_sizes(const E1& e1, const E2& e2)
 | ||
|         {
 | ||
|             using shape_value_type = typename E1::shape_type::value_type;
 | ||
|             bool is_row_major = true;
 | ||
| 
 | ||
|             // Try to find a row-major scheme first, where the outer loop is on the first N = `cut`
 | ||
|             // dimensions, and the inner loop is
 | ||
|             is_row_major = true;
 | ||
|             auto is_zero = [](auto i)
 | ||
|             {
 | ||
|                 return i == 0;
 | ||
|             };
 | ||
|             auto&& strides = e1.strides();
 | ||
|             auto it_bwd = std::find_if_not(strides.rbegin(), strides.rend(), is_zero);
 | ||
|             bool de1_row_contiguous = it_bwd != strides.rend() && *it_bwd == 1;
 | ||
|             auto it_fwd = std::find_if_not(strides.begin(), strides.end(), is_zero);
 | ||
|             bool de1_col_contiguous = it_fwd != strides.end() && *it_fwd == 1;
 | ||
|             if (de1_row_contiguous)
 | ||
|             {
 | ||
|                 is_row_major = true;
 | ||
|             }
 | ||
|             else if (de1_col_contiguous)
 | ||
|             {
 | ||
|                 is_row_major = false;
 | ||
|             }
 | ||
|             else
 | ||
|             {
 | ||
|                 // No strided loop possible.
 | ||
|                 return {false, true, 1, e1.size(), e1.dimension(), e1.dimension()};
 | ||
|             }
 | ||
| 
 | ||
|             // Cut is the number of dimensions in the outer loop
 | ||
|             std::size_t cut = 0;
 | ||
| 
 | ||
|             if (is_row_major)
 | ||
|             {
 | ||
|                 auto csf = check_strides_functor<layout_type::row_major, decltype(e1.strides())>(e1.strides());
 | ||
|                 cut = csf(e2);
 | ||
|                 // This makes that only one dimension will be treated in the inner loop.
 | ||
|                 if (cut < e1.strides().size() - 1)
 | ||
|                 {
 | ||
|                     // Only make the inner loop go over one dimension by default for now
 | ||
|                     cut = e1.strides().size() - 1;
 | ||
|                 }
 | ||
|             }
 | ||
|             else if (!is_row_major)
 | ||
|             {
 | ||
|                 auto csf = check_strides_functor<layout_type::column_major, decltype(e1.strides())>(e1.strides()
 | ||
|                 );
 | ||
|                 cut = csf(e2);
 | ||
|                 if (cut > 1)
 | ||
|                 {
 | ||
|                     // Only make the inner loop go over one dimension by default for now
 | ||
|                     cut = 1;
 | ||
|                 }
 | ||
|             }  // can't reach here because this would have already triggered the fallback
 | ||
| 
 | ||
|             std::size_t outer_loop_size = static_cast<std::size_t>(std::accumulate(
 | ||
|                 e1.shape().begin(),
 | ||
|                 e1.shape().begin() + static_cast<std::ptrdiff_t>(cut),
 | ||
|                 shape_value_type(1),
 | ||
|                 std::multiplies<shape_value_type>{}
 | ||
|             ));
 | ||
|             std::size_t inner_loop_size = static_cast<std::size_t>(std::accumulate(
 | ||
|                 e1.shape().begin() + static_cast<std::ptrdiff_t>(cut),
 | ||
|                 e1.shape().end(),
 | ||
|                 shape_value_type(1),
 | ||
|                 std::multiplies<shape_value_type>{}
 | ||
|             ));
 | ||
| 
 | ||
|             if (!is_row_major)
 | ||
|             {
 | ||
|                 std::swap(outer_loop_size, inner_loop_size);
 | ||
|             }
 | ||
| 
 | ||
|             return {inner_loop_size > 1, is_row_major, inner_loop_size, outer_loop_size, cut, e1.dimension()};
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <bool simd>
 | ||
|     template <class E1, class E2>
 | ||
|     inline strided_assign_detail::loop_sizes_t strided_loop_assigner<simd>::get_loop_sizes(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         return strided_assign_detail::get_loop_sizes<simd>(e1, e2);
 | ||
|     }
 | ||
| 
 | ||
| #define strided_parallel_assign
 | ||
| 
 | ||
|     template <bool simd>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void strided_loop_assigner<simd>::run(E1& e1, const E2& e2, const loop_sizes_t& loop_sizes)
 | ||
|     {
 | ||
|         bool is_row_major = loop_sizes.is_row_major;
 | ||
|         std::size_t inner_loop_size = loop_sizes.inner_loop_size;
 | ||
|         std::size_t outer_loop_size = loop_sizes.outer_loop_size;
 | ||
|         std::size_t cut = loop_sizes.cut;
 | ||
| 
 | ||
| 
 | ||
|         // TODO can we get rid of this and use `shape_type`?
 | ||
|         dynamic_shape<std::size_t> idx, max_shape;
 | ||
| 
 | ||
|         if (is_row_major)
 | ||
|         {
 | ||
|             xt::resize_container(idx, cut);
 | ||
|             max_shape.assign(e1.shape().begin(), e1.shape().begin() + static_cast<std::ptrdiff_t>(cut));
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             xt::resize_container(idx, e1.shape().size() - cut);
 | ||
|             max_shape.assign(e1.shape().begin() + static_cast<std::ptrdiff_t>(cut), e1.shape().end());
 | ||
|         }
 | ||
| 
 | ||
|         // add this when we have std::array index!
 | ||
|         // std::fill(idx.begin(), idx.end(), 0);
 | ||
|         using e1_value_type = typename E1::value_type;
 | ||
|         using e2_value_type = typename E2::value_type;
 | ||
|         constexpr bool needs_cast = has_assign_conversion<e1_value_type, e2_value_type>::value;
 | ||
|         using value_type = typename xassign_traits<E1, E2>::requested_value_type;
 | ||
|         using simd_type = std::conditional_t<
 | ||
|             std::is_same<e1_value_type, bool>::value,
 | ||
|             xt_simd::simd_bool_type<value_type>,
 | ||
|             xt_simd::simd_type<value_type>>;
 | ||
| 
 | ||
|         std::size_t simd_size = inner_loop_size / simd_type::size;
 | ||
|         std::size_t simd_rest = inner_loop_size % simd_type::size;
 | ||
| 
 | ||
|         auto fct_stepper = e2.stepper_begin(e1.shape());
 | ||
|         auto res_stepper = e1.stepper_begin(e1.shape());
 | ||
| 
 | ||
|         // TODO in 1D case this is ambiguous -- could be RM or CM.
 | ||
|         //      Use default layout to make decision
 | ||
|         std::size_t step_dim = 0;
 | ||
|         if (!is_row_major)  // row major case
 | ||
|         {
 | ||
|             step_dim = cut;
 | ||
|         }
 | ||
| #if defined(XTENSOR_USE_OPENMP) && defined(strided_parallel_assign)
 | ||
|         if (outer_loop_size >= XTENSOR_OPENMP_TRESHOLD / inner_loop_size)
 | ||
|         {
 | ||
|             std::size_t first_step = true;
 | ||
| #pragma omp parallel for schedule(static) firstprivate(first_step, fct_stepper, res_stepper, idx)
 | ||
|             for (std::size_t ox = 0; ox < outer_loop_size; ++ox)
 | ||
|             {
 | ||
|                 if (first_step)
 | ||
|                 {
 | ||
|                     is_row_major
 | ||
|                         ? strided_assign_detail::idx_tools<layout_type::row_major>::nth_idx(ox, idx, max_shape)
 | ||
|                         : strided_assign_detail::idx_tools<layout_type::column_major>::nth_idx(ox, idx, max_shape);
 | ||
| 
 | ||
|                     for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                     {
 | ||
|                         fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                         res_stepper.step(i + step_dim, idx[i]);
 | ||
|                     }
 | ||
|                     first_step = false;
 | ||
|                 }
 | ||
| 
 | ||
|                 for (std::size_t i = 0; i < simd_size; ++i)
 | ||
|                 {
 | ||
|                     res_stepper.template store_simd(fct_stepper.template step_simd<value_type>());
 | ||
|                 }
 | ||
|                 for (std::size_t i = 0; i < simd_rest; ++i)
 | ||
|                 {
 | ||
|                     *(res_stepper) = conditional_cast<needs_cast, e1_value_type>(*(fct_stepper));
 | ||
|                     res_stepper.step_leading();
 | ||
|                     fct_stepper.step_leading();
 | ||
|                 }
 | ||
| 
 | ||
|                 // next unaligned index
 | ||
|                 is_row_major
 | ||
|                     ? strided_assign_detail::idx_tools<layout_type::row_major>::next_idx(idx, max_shape)
 | ||
|                     : strided_assign_detail::idx_tools<layout_type::column_major>::next_idx(idx, max_shape);
 | ||
| 
 | ||
|                 fct_stepper.to_begin();
 | ||
| 
 | ||
|                 // need to step E1 as well if not contigous assign (e.g. view)
 | ||
|                 if (!E1::contiguous_layout)
 | ||
|                 {
 | ||
|                     res_stepper.to_begin();
 | ||
|                     for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                     {
 | ||
|                         fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                         res_stepper.step(i + step_dim, idx[i]);
 | ||
|                     }
 | ||
|                 }
 | ||
|                 else
 | ||
|                 {
 | ||
|                     for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                     {
 | ||
|                         fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
| #elif defined(strided_parallel_assign) && defined(XTENSOR_USE_TBB)
 | ||
|         if (outer_loop_size > XTENSOR_TBB_THRESHOLD / inner_loop_size)
 | ||
|         {
 | ||
|             tbb::static_partitioner sp;
 | ||
|             tbb::parallel_for(
 | ||
|                 tbb::blocked_range<size_t>(0ul, outer_loop_size),
 | ||
|                 [&e1, &e2, is_row_major, step_dim, simd_size, simd_rest, &max_shape, &idx_ = idx](
 | ||
|                     const tbb::blocked_range<size_t>& r
 | ||
|                 )
 | ||
|                 {
 | ||
|                     auto idx = idx_;
 | ||
|                     auto fct_stepper = e2.stepper_begin(e1.shape());
 | ||
|                     auto res_stepper = e1.stepper_begin(e1.shape());
 | ||
|                     std::size_t first_step = true;
 | ||
|                     // #pragma omp parallel for schedule(static) firstprivate(first_step, fct_stepper,
 | ||
|                     // res_stepper, idx)
 | ||
|                     for (std::size_t ox = r.begin(); ox < r.end(); ++ox)
 | ||
|                     {
 | ||
|                         if (first_step)
 | ||
|                         {
 | ||
|                             is_row_major
 | ||
|                                 ? strided_assign_detail::idx_tools<layout_type::row_major>::nth_idx(ox, idx, max_shape)
 | ||
|                                 : strided_assign_detail::idx_tools<layout_type::column_major>::nth_idx(
 | ||
|                                     ox,
 | ||
|                                     idx,
 | ||
|                                     max_shape
 | ||
|                                 );
 | ||
| 
 | ||
|                             for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                             {
 | ||
|                                 fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                                 res_stepper.step(i + step_dim, idx[i]);
 | ||
|                             }
 | ||
|                             first_step = false;
 | ||
|                         }
 | ||
| 
 | ||
|                         for (std::size_t i = 0; i < simd_size; ++i)
 | ||
|                         {
 | ||
|                             res_stepper.template store_simd(fct_stepper.template step_simd<value_type>());
 | ||
|                         }
 | ||
|                         for (std::size_t i = 0; i < simd_rest; ++i)
 | ||
|                         {
 | ||
|                             *(res_stepper) = conditional_cast<needs_cast, e1_value_type>(*(fct_stepper));
 | ||
|                             res_stepper.step_leading();
 | ||
|                             fct_stepper.step_leading();
 | ||
|                         }
 | ||
| 
 | ||
|                         // next unaligned index
 | ||
|                         is_row_major
 | ||
|                             ? strided_assign_detail::idx_tools<layout_type::row_major>::next_idx(idx, max_shape)
 | ||
|                             : strided_assign_detail::idx_tools<layout_type::column_major>::next_idx(idx, max_shape);
 | ||
| 
 | ||
|                         fct_stepper.to_begin();
 | ||
| 
 | ||
|                         // need to step E1 as well if not contigous assign (e.g. view)
 | ||
|                         if (!E1::contiguous_layout)
 | ||
|                         {
 | ||
|                             res_stepper.to_begin();
 | ||
|                             for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                             {
 | ||
|                                 fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                                 res_stepper.step(i + step_dim, idx[i]);
 | ||
|                             }
 | ||
|                         }
 | ||
|                         else
 | ||
|                         {
 | ||
|                             for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                             {
 | ||
|                                 fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                             }
 | ||
|                         }
 | ||
|                     }
 | ||
|                 },
 | ||
|                 sp
 | ||
|             );
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
| 
 | ||
| #endif
 | ||
|             for (std::size_t ox = 0; ox < outer_loop_size; ++ox)
 | ||
|             {
 | ||
|                 for (std::size_t i = 0; i < simd_size; ++i)
 | ||
|                 {
 | ||
|                     res_stepper.store_simd(fct_stepper.template step_simd<value_type>());
 | ||
|                 }
 | ||
|                 for (std::size_t i = 0; i < simd_rest; ++i)
 | ||
|                 {
 | ||
|                     *(res_stepper) = conditional_cast<needs_cast, e1_value_type>(*(fct_stepper));
 | ||
|                     res_stepper.step_leading();
 | ||
|                     fct_stepper.step_leading();
 | ||
|                 }
 | ||
| 
 | ||
|                 is_row_major
 | ||
|                     ? strided_assign_detail::idx_tools<layout_type::row_major>::next_idx(idx, max_shape)
 | ||
|                     : strided_assign_detail::idx_tools<layout_type::column_major>::next_idx(idx, max_shape);
 | ||
| 
 | ||
|                 fct_stepper.to_begin();
 | ||
| 
 | ||
|                 // need to step E1 as well if not contigous assign (e.g. view)
 | ||
|                 if (!E1::contiguous_layout)
 | ||
|                 {
 | ||
|                     res_stepper.to_begin();
 | ||
|                     for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                     {
 | ||
|                         fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                         res_stepper.step(i + step_dim, idx[i]);
 | ||
|                     }
 | ||
|                 }
 | ||
|                 else
 | ||
|                 {
 | ||
|                     for (std::size_t i = 0; i < idx.size(); ++i)
 | ||
|                     {
 | ||
|                         fct_stepper.step(i + step_dim, idx[i]);
 | ||
|                     }
 | ||
|                 }
 | ||
|             }
 | ||
| #if (defined(XTENSOR_USE_OPENMP) || defined(XTENSOR_USE_TBB)) && defined(strided_parallel_assign)
 | ||
|         }
 | ||
| #endif
 | ||
|     }
 | ||
| 
 | ||
|     template <>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void strided_loop_assigner<true>::run(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         strided_assign_detail::loop_sizes_t loop_sizes = strided_loop_assigner<true>::get_loop_sizes(e1, e2);
 | ||
|         if (loop_sizes.can_do_strided_assign)
 | ||
|         {
 | ||
|             run(e1, e2, loop_sizes);
 | ||
|         }
 | ||
|         else
 | ||
|         {
 | ||
|             // trigger the fallback assigner
 | ||
|             stepper_assigner<E1, E2, default_assignable_layout(E1::static_layout)>(e1, e2).run();
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     template <>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void strided_loop_assigner<false>::run(E1& /*e1*/, const E2& /*e2*/, const loop_sizes_t&)
 | ||
|     {
 | ||
|     }
 | ||
| 
 | ||
|     template <>
 | ||
|     template <class E1, class E2>
 | ||
|     inline void strided_loop_assigner<false>::run(E1& e1, const E2& e2)
 | ||
|     {
 | ||
|         // trigger the fallback assigner
 | ||
|         stepper_assigner<E1, E2, default_assignable_layout(E1::static_layout)>(e1, e2).run();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #endif
 |