From 5fe64f1a9f372f2161409a05a54ab0f8936e7431 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=96=B9=E8=80=8C=E9=9D=99?= Date: Wed, 7 Sep 2022 11:57:00 +0000 Subject: [PATCH] =?UTF-8?q?=E7=BB=99=E5=87=BA=E8=89=AF=E5=BA=8F=E5=8E=9F?= =?UTF-8?q?=E7=90=86=E7=9A=84=E4=B8=80=E4=B8=AA=E6=9B=B4=E7=AE=80=E5=8D=95?= =?UTF-8?q?=E7=9A=84=E8=AF=81=E6=98=8E?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 通过有限集合最小元的存在性,给出良序原理的一个更简单的证明。 Signed-off-by: 方而静 --- src/第8章 无限集合.md | 12 +++--------- 1 file changed, 3 insertions(+), 9 deletions(-) diff --git a/src/第8章 无限集合.md b/src/第8章 无限集合.md index a3ba102..1042802 100644 --- a/src/第8章 无限集合.md +++ b/src/第8章 无限集合.md @@ -6,17 +6,11 @@ 可数集意味着存在一种方式可以给集合中的所有元素编号,这使得我们可以将集合中的所有元素用无限序列的形式表示出来,并施加归纳法。 -- **命题 8.1.2(良序原理)**:设非空集合 $X\subseteq \mathbb N$。那么恰存在一个元素 $n\in X$,使得对于任意 $m\in X$ 有 $n\leqslant m$。且 $n=\inf(X)$。 +- **命题 8.1.2(良序原理)**:设非空集合 $S\subseteq \mathbb N$。那么恰存在一个元素 $n\in S$,使得对于任意 $m\in S$ 有 $n\leqslant m$,称 $n$ 为集合 $S$ 的最小元,记为 $\min(S)$。 - 称 $n$ 为集合 $X$ 的最小元,记为 $\min(X)$。 + **证明**:(同一法)首先证明存在性,由于 $S$ 不为空集,存在一个自然数 $m\in S$。考虑集合 $S':=\left\{x\in S:x\leqslant m\right\}$ 显然为非空有限集,根据 3.6.9,$S'$ 存在最小元,记作 $a$,根据定义有 $a\leqslant m$。对于任意 $x\in S$,若 $x\in S'$,则必有 $a\leqslant x$,若 $a\not\in S'$,则必有 $x\geqslant m\geqslant a$。故 $a$ 为集合 $S$ 的最小元。 - **证明**:唯一性:若 $n,n'$ 都是集合 $X$ 的最小元,那么 $n\leqslant n'$ 和 $n'\leqslant n$ 同时成立,得到 $n=n'$。 - - 存在性:设 $n=\inf(X)$,只需证明 $n\in X$ 即可。反证,若 $n\not\in X$: - - 首先 $X$ 非空且有下界 $0$,故 $n$ 非 $-\infty,+\infty$ 且为非负实数。根据命题 5.4.10,存在唯一的整数 $A$ 满足 $A\leqslant nn$,那么 $x\geqslant A+1$。于是 $A+1$ 也是 $X$ 的下界,矛盾。 + 然后证明唯一性。(反证法)若 $n,n'$ 都是集合 $S$ 的最小元,那么 $n\leqslant n'$ 和 $n'\leqslant n$ 同时成立,得到 $n=n'$。 - **命题 8.1.3**:设无限集 $X\subseteq \mathbb N$,那么存在唯一一个双射 $f:\mathbb N\to X$,满足对于任意 $n\in\mathbb N$,$f(n)< f(n+1)$。