diff --git a/src/第3章 集合论.md b/src/第3章 集合论.md index 718ec76..366d56b 100644 --- a/src/第3章 集合论.md +++ b/src/第3章 集合论.md @@ -1,4 +1,5 @@ + 我们现在介绍集合论中的一些概念和记号,他们通常广泛而频繁地被用到。几乎所有数学分支领域都将集合论作为其基础。因此在学习高级的数学领域之前,学习集合论中的一些基础概念是非常重要的。我们下面给出公理集合论中的部分(较为初等)的内容,可以证明,我们将要建立的集合公理体系是等价于ZF公理集合论的。 ## 3.1 基本事项 @@ -430,6 +431,20 @@ 容易证明 $h$ 是个双射,证毕。 -经过上述性质的证明,我们看到,通过基数和单个选取引理,我们已经能对有限集使用类似归纳的方法了。 +经过上述性质的证明,我们看到,通过基数和单个选取引理,我们已经能对有限集使用类似归纳的方法了。这使得我们可以很容易地论证有限集合中有一个最大的数和最小的数。 + +- **命题3.6.9(有限集的最小元和最大元)**:设 $S\subset\mathbb N$ 为非空有限集,恰好存在一个自然数 $n\in\mathbb S$,使得 $\forall_{m\in S}n\leqslant m$,称 $n$ 为集合 $S$ 的最小元,记作 $\min S$。对称地,恰好存在一个自然数 $n\in\mathbb S$,使得 $\forall_{m\in S}n\geqslant m$,称 $n$ 为集合 $S$ 的最大元,记作 $\max S$。 + + **证明**:这里只给出最小元的证明,最大元同理。(同一法)首先证明最小元存在性。(数学归纳法)设关于 $x$ 的命题 $p(x)$ 为真当且仅当 $\forall_{S\subset\mathbb N,\operatorname{card}S=x+1}$,有 $\min S$ 存在。 + + 对于任意一个单元素集 $\{a\}\subset\mathbb N$,$a$ 显然是 $\{a\}$ 的最小元,且 $\operatorname{card}\{a\}=1$,故 $p(0)$ 为真。 + + 假设 $p(n)$ 为真,考虑任意一个集合 $S\subset\mathbb N$,满足 $\operatorname{card}S=n+2$,由于 $S$ 为非空集合,故可以找到一个元素 $a\in S$。由于 $p(n)$ 为真,故 $S\setminus\{a\}$ 存在最小元,记作 $b$。若 $a>b$ 则根据定义 $b$ 为 $S$ 的最小元。若 $a