From 86a195e89cfce5cf7a89b9935177d6977aeb4972 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=96=B9=E8=80=8C=E9=9D=99?= Date: Wed, 7 Sep 2022 11:43:15 +0000 Subject: [PATCH] =?UTF-8?q?=E5=A2=9E=E5=8A=A0=E5=85=B3=E4=BA=8E=E6=9C=89?= =?UTF-8?q?=E9=99=90=E9=9B=86=E5=90=88=E7=9A=84=E6=9C=80=E5=A4=A7=E5=85=83?= =?UTF-8?q?=E5=92=8C=E6=9C=80=E5=B0=8F=E5=85=83=E7=9A=84=E5=AD=98=E5=9C=A8?= =?UTF-8?q?=E6=80=A7=E7=9A=84=E5=91=BD=E9=A2=98?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 作为对有限集使用类似归纳的方法的一个例子,在第3章的结尾自然的增加关于有限集合的最大元和最小元的存在性的命题 3.6.9,这将方便良序原理的证明。 Signed-off-by: 方而静 --- src/第3章 集合论.md | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/src/第3章 集合论.md b/src/第3章 集合论.md index 718ec76..e33a4eb 100644 --- a/src/第3章 集合论.md +++ b/src/第3章 集合论.md @@ -430,6 +430,20 @@ 容易证明 $h$ 是个双射,证毕。 -经过上述性质的证明,我们看到,通过基数和单个选取引理,我们已经能对有限集使用类似归纳的方法了。 +经过上述性质的证明,我们看到,通过基数和单个选取引理,我们已经能对有限集使用类似归纳的方法了。这使得我们可以很容易地论证有限集合中有一个最大的数和最小的数。 + +- **命题3.6.9(有限集的最小元和最大元)**:设 $S\subset\mathbb N$ 为非空有限集,恰好存在一个自然数 $n\in\mathbb S$,使得 $\forall_{m\in S}n\leqslant m$,称 $n$ 为集合 $S$ 的最小元,记作 $\min S$。对称地,恰好存在一个自然数 $n\in\mathbb S$,使得 $\forall_{m\in S}n\geqslant m$,称 $n$ 为集合 $S$ 的最大元,记作 $\max S$。 + + **证明**:这里只给出最小元的证明,最大元同理。(同一法)首先证明最小元存在性。(数学归纳法)设关于 $x$ 的命题 $p(x)$ 为真当且仅当 $\forall_{S\subset\mathbb N,\operatorname{card}S=x+1}$,有 $\min S$ 存在。 + + 对于任意一个单元素集 $\{a\}\subset\mathbb N$,$a$ 显然是 $\{a\}$ 的最小元,且 $\operatorname{card}\{a\}=1$,故 $p(0)$ 为真。 + + 假设 $p(n)$ 为真,考虑任意一个集合 $S\subset\mathbb N$,满足 $\operatorname{card}S=n+2$,由于 $S$ 为非空集合,故可以找到一个元素 $a\in S$。由于 $p(n)$ 为真,故 $S\setminus\{a\}$ 存在最小元,记作 $b$。若 $a>b$ 则根据定义 $b$ 为 $S$ 的最小元。若 $a