From 07ca699a59f4f64ca78e5912ba403d5ae8cb403c Mon Sep 17 00:00:00 2001 From: szdytom Date: Fri, 11 Jul 2025 11:20:54 +0800 Subject: [PATCH] Fix typo, thanks ZRY Signed-off-by: szdytom --- sections/1A.typ | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/sections/1A.typ b/sections/1A.typ index 14bcdae..5927453 100644 --- a/sections/1A.typ +++ b/sections/1A.typ @@ -28,7 +28,7 @@ $ (alpha beta) lambda &= ((a + b ii)(c + d ii))(e + f ii) \ &= (a c - b d + (a d + b c) ii)(e + f ii) \ - &= (a c e - b d f - (a d + b c)f + (a d + b c)e) + ((a d + b c)e + (a c - b d)f) ii \ + &= (a c e - b d e - (a d + b c)f) + ((a d + b c)e + (a c - b d)f) ii \ &= alpha (beta lambda) $ ] @@ -69,7 +69,7 @@ 根据定义,令 $alpha = a + b ii$(其中 $a,b in RR$),则取 $beta = (a / (a^2 + b^2)) - (b / (a^2 + b^2)) ii$,则有 $ alpha beta &= (a + b ii)(a/(a^2 + b^2) - b/(a^2 + b^2) ii) \ - &= (a^2 + b^2)(a^2 + b^2) \ + &= (a^2 + b^2) / (a^2 + b^2) \ &= 1 $ #tab 因此,这样的 $beta$ 存在。为了说明其唯一性,我们假设存在另一个 $beta'$,也满足 $alpha beta' = 1$,则有