From 235f942fbbed70646358b785b8943f838d1f0b79 Mon Sep 17 00:00:00 2001 From: szdytom Date: Thu, 10 Jul 2025 23:00:20 +0800 Subject: [PATCH] shorten list Signed-off-by: szdytom --- sections/1A.typ | 40 ++++++++++++++++++++-------------------- 1 file changed, 20 insertions(+), 20 deletions(-) diff --git a/sections/1A.typ b/sections/1A.typ index 6f4a5cf..14bcdae 100644 --- a/sections/1A.typ +++ b/sections/1A.typ @@ -139,11 +139,11 @@ #note[沿用原书记号1.6与记号1.10,即 $FF$ 表示 $RR$ 或 $CC$,$n$ 表示某一固定的正整数。下文不再赘述。] ][ - 根据定义,令 $x = (x_1, x_2, dots, x_n)$,$y = (y_1, y_2, dots, y_n)$,$z = (z_1, z_2, dots, z_n)$,则有 + 根据定义,令 $x = (x_1, dots, x_n)$,$y = (y_1, dots, y_n)$,$z = (z_1, dots, z_n)$,则有 - $ (x+y)+z &= ((x_1+y_1, x_2+y_2, dots, x_n+y_n) + (z_1, z_2, dots, z_n)) \ - &= (x_1+y_1+z_1, x_2+y_2+z_2, dots, x_n+y_n+z_n) \ - &= ((x_1, x_2, dots, x_n) + (y_1+z_1, y_2+z_2, dots, y_n+z_n)) \ + $ (x+y)+z &= ((x_1+y_1, dots, x_n+y_n) + (z_1, dots, z_n)) \ + &= (x_1+y_1+z_1, dots, x_n+y_n+z_n) \ + &= ((x_1, dots, x_n) + (y_1+z_1, dots, y_n+z_n)) \ &= x+(y+z) $ ] @@ -152,44 +152,44 @@ #exercise_sol(type: "proof")[ 证明:$(a b)x = a(b x)$ 对所有 $x in FF^n$ 和 $a,b in FF$ 成立。 ][ - 根据定义,令 $x = (x_1, x_2, dots, x_n)$,则有 + 根据定义,令 $x = (x_1, dots, x_n)$,则有 - $ (a b)x &= (a b)(x_1, x_2, dots, x_n) \ - &= (a b x_1, a b x_2, dots, a b x_n) \ - &= a(b x_1, b x_2, dots, b x_n)) \ + $ (a b)x &= (a b)(x_1, dots, x_n) \ + &= (a b x_1, dots, a b x_n) \ + &= a(b x_1, dots, b x_n)) \ &= a(b x) $ ] #exercise_sol(type: "proof", ref: <1A-ffn-mul-unit>)[ 证明:$1 x=x$ 对所有 $x in FF^n$ 成立。 ][ - 根据定义,令 $x = (x_1, x_2, dots, x_n)$,则有 + 根据定义,令 $x = (x_1, dots, x_n)$,则有 - $ 1 x &= 1(x_1, x_2, dots, x_n) \ - &= (1 dot x_1, 1 dot x_2, dots, 1 dot x_n) \ - &= (x_1, x_2, dots, x_n) \ + $ 1 x &= 1(x_1, dots, x_n) \ + &= (1 dot x_1, dots, 1 dot x_n) \ + &= (x_1, dots, x_n) \ &= x $ ] #exercise_sol(type: "proof", ref: <1A-ffn-distri-2v1s>)[ 证明:$lambda (x+y) = lambda x + lambda y$ 对所有 $lambda in FF$ 和 $x,y in FF^n$ 成立。 ][ - 根据定义,令 $x = (x_1, x_2, dots, x_n)$,$y = (y_1, y_2, dots, y_n)$,则有 + 根据定义,令 $x = (x_1, dots, x_n)$,$y = (y_1, dots, y_n)$,则有 - $ lambda (x+y) &= lambda ((x_1+y_1, x_2+y_2, dots, x_n+y_n)) \ - &= (lambda(x_1+y_1), lambda(x_2+y_2), dots, lambda(x_n+y_n)) \ - &= (lambda x_1 + lambda y_1, lambda x_2 + lambda y_2, dots, lambda x_n + lambda y_n) \ + $ lambda (x+y) &= lambda ((x_1+y_1, dots, x_n+y_n)) \ + &= (lambda(x_1+y_1), dots, lambda(x_n+y_n)) \ + &= (lambda x_1 + lambda y_1, dots, lambda x_n + lambda y_n) \ &= lambda x + lambda y $ ] #exercise_sol(type: "proof", ref: <1A-ffn-distri-1v2s>)[ 证明:$(a+b)x = a x + b x$ 对所有 $a,b in FF$ 和 $x in FF^n$ 成立。 ][ - 根据定义,令 $x = (x_1, x_2, dots, x_n)$,则有 + 根据定义,令 $x = (x_1, dots, x_n)$,则有 - $ (a+b)x &= (a+b)(x_1, x_2, dots, x_n) \ - &= (a x_1 + b x_1, a x_2 + b x_2, dots, a x_n + b x_n) \ - &= (a x_1, a x_2, dots, a x_n) + (b x_1, b x_2, dots, b x_n) \ + $ (a+b)x &= (a+b)(x_1, dots, x_n) \ + &= (a x_1 + b x_1, dots, a x_n + b x_n) \ + &= (a x_1, dots, a x_n) + (b x_1, dots, b x_n) \ &= a x + b x $ ]