mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-20 00:40:16 +00:00
fix lint
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
fdf272c53d
commit
447bb356fd
@ -45,3 +45,9 @@ name = "ambiguous-poly-notation"
|
|||||||
pattern = "Poly_[a-z]\\("
|
pattern = "Poly_[a-z]\\("
|
||||||
enforce = true
|
enforce = true
|
||||||
comment = "Missing space after Poly_m"
|
comment = "Missing space after Poly_m"
|
||||||
|
|
||||||
|
[[rule]]
|
||||||
|
name = "use-tab-as-indent"
|
||||||
|
pattern = "^[ ]+"
|
||||||
|
enforce = true
|
||||||
|
comment = "Please use tab as indent instead of spaces"
|
||||||
|
@ -263,6 +263,6 @@
|
|||||||
|
|
||||||
/ 第 $k$ 步: \
|
/ 第 $k$ 步: \
|
||||||
假设向量组 $p_0, dots, p_(k - 1)$ 是线性无关的。根据多项式系数的唯一性,$k$ 次多项式 $p_k in.not span(p_0, dots, p_(k-1))$,于是根据#exercise_ref(<E-when-vector-list-append-remains-indep>),向量组 $p_0, dots, p_k$ 是线性无关的。
|
假设向量组 $p_0, dots, p_(k - 1)$ 是线性无关的。根据多项式系数的唯一性,$k$ 次多项式 $p_k in.not span(p_0, dots, p_(k-1))$,于是根据#exercise_ref(<E-when-vector-list-append-remains-indep>),向量组 $p_0, dots, p_k$ 是线性无关的。
|
||||||
|
|
||||||
#tab 综上所述,对于任意自然数 $m$,向量组 $p_0, dots, p_m$ 是线性无关的。注意到对于任意正整数 $m$,$Poly_m (FF) = m + 1$,根据长度恰当的线性无关组是基(原书2.38),$p_0, dots, p_m$ 是 $Poly_m (FF)$ 的基。
|
#tab 综上所述,对于任意自然数 $m$,向量组 $p_0, dots, p_m$ 是线性无关的。注意到对于任意正整数 $m$,$Poly_m (FF) = m + 1$,根据长度恰当的线性无关组是基(原书2.38),$p_0, dots, p_m$ 是 $Poly_m (FF)$ 的基。
|
||||||
]
|
]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user