Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-08-11 02:00:40 +08:00
parent 1e8fa70977
commit 47ecc2ff1f
Signed by: szTom
GPG Key ID: 072D999D60C6473C

View File

@ -473,3 +473,51 @@
#tab 综上所述,$dim range S T <= min{dim range S, dim range T}$
]
#exercise_sol(type: "answer")[
+ $dim V = 5$,且 $S, T in LinearMap(V)$,使得 $S T = 0$。证明 $dim range T S <= 2$
+ 给出一例:$S, T in LinearMap(V)$,使得 $S T = 0$ $dim range T S = 2$
][
对于a根据线性映射基本定理原书3.21),有
$ dim V &= dim null S + dim range S \
dim V &= dim null T + dim range T $
#tab $v in V$,则 $S (T v) = S T v = 0$,故 $range T subset.eq null S$,即 $dim range T <= dim null S$。再代入 $dim V = 5$,整理得
$ dim range T + dim range S <= dim null S + dim range S = 5 $
#tab 注意到 $3 + 3 = 6 > 5$,故 $dim range T < 3$ $dim range S < 3$。分类讨论:当 $dim range T < 3$ 时,即 $dim range T <= 2$。考虑到
$ range T S = {T v : v in range S} subset.eq range T $
#tab 这说明 $dim range T S <= dim range T <= 2$
#tab 另一方面,当 $dim range S < 3$ 时,即 $dim range S <= 2$,故 $dim null S >= 3$。根据“线性映射将 $0$ 映射到 $0$原书3.10$0 in null T$,故
$ null S = {v in V : S v = 0} subset.eq {v in V : S v in null T} = null T S $
#tab 这说明 $3 <= dim null S <= dim null T S$再根据线性映射基本定理原书3.21),可得 $dim range T S <= 2$
#tab 对于b $v_1, dots, v_5$ $V$ 的一组基。根据线性映射引理原书3.4),存在 $S, T in LinearMap(V)$,使得 $S v_1 = S v_2 = S v_3 = 0$$S v_4 = v_4$$S v_5 = v_5$,以及 $T v_1 = T v_2 = T v_3 = 0$$T v_4 = v_1$$T v_5 = v_2$
#tab $v in V$,将 $v$ 表示为
$ v = a_1 v_1 + dots.c + a_5 v_5 $
#tab 其中 $a_1, dots, a_5 in FF$。则
$ S T v &= S (a_1 T v_1 + dots.c + a_5 T v_5) \
&= S (a_4 v_1 + a_5 v_2) \
&= a_4 S v_1 + a_5 S v_2 \
&= 0 $
#tab 这说明 $S T = 0$。而
$ T S v &= T (a_1 S v_1 + dots.c + a_5 S v_5) \
&= T (a_4 v_4 + a_5 v_5) \
&= a_4 T v_4 + a_5 T v_5 \
&= a_4 v_1 + a_5 v_2 $
#tab 这说明 $range T S = span(v_1, v_2)$,因此 $dim range T S = 2$。综上所述,$S, T in LinearMap(V)$,使得 $S T = 0$ $dim range T S = 2$
]