From 6bf3fd20641560f7f96a7795bca26ef40b57b6b8 Mon Sep 17 00:00:00 2001 From: szdytom Date: Mon, 28 Jul 2025 15:48:29 +0800 Subject: [PATCH] 3A p8 Signed-off-by: szdytom --- sections/3A.typ | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) diff --git a/sections/3A.typ b/sections/3A.typ index 0200b7c..6816b58 100644 --- a/sections/3A.typ +++ b/sections/3A.typ @@ -215,3 +215,30 @@ #tab 综上所述,$T v = lambda v$ 对任意 $v in V$ 成立。 ] + +#exercise_sol(type: "proof")[ + 给出一个例子:函数 $phi: RR^2 -> RR$,使得对于任意 $a in RR$ 和 $v in RR^2$,有 + + $ phi(a v) = a phi(v) $ + + 但是 $phi$ 不是线性映射。 +][ + 对于任意 $(x, y) in RR^2$,令 + + $ phi(x, y) = cases( + x wide& abs(x) >= abs(y), + y & abs(x) < abs(y), + ) $ + + #tab 设 $a in RR$,则当 $abs(x) >= abs(y)$ 时,$phi(x, y) = x$,且有 $abs(a x) >= abs(a y)$,于是 + + $ phi(a(x, y)) = phi(a x, a y) = a x = a phi(x, y) $ + + #tab 当 $abs(x) < abs(y)$ 时,$phi(x, y) = y$,且有 $abs(a x) < abs(a y)$,于是 + + $ phi(a(x, y)) = phi(a x, a y) = a y = a phi(y) $ + + #tab 因此,对于任意 $a in RR$ 和 $v in RR^2$,都有 $phi(a v) = a phi(v)$。 + + #tab 但是 $phi$ 不是线性映射。因为当 $v = (1, 0)$ 和 $w = (0, -1)$ 时,$phi(v + w) = phi(1, -1) = 1$,而 $phi(v) + phi(w) = phi(1, 0) + phi(0, -1) = 1 + (-1) = 0$,即 $phi(v + w) != phi(v) + phi(w)$,这违背了线性映射的可加性的要求。 +]