From 89a71882867ab8889213d7df73fb7f740042cd75 Mon Sep 17 00:00:00 2001 From: szdytom Date: Tue, 12 Aug 2025 00:37:49 +0800 Subject: [PATCH] 3B 26 Signed-off-by: szdytom --- sections/3B.typ | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/sections/3B.typ b/sections/3B.typ index 10a7d41..72feed7 100644 --- a/sections/3B.typ +++ b/sections/3B.typ @@ -507,3 +507,23 @@ #tab 综上所述,$null S subset.eq null T$,当且仅当,存在 $E in LinearMap(W)$,使得 $T = E S$。 ] + +#exercise_sol(type: "proof")[ + 设 $V$ 是有限维向量空间,$S, T in LinearMap(V)$。证明:$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$。 +][ + 首先假设 $range S subset.eq range T$。设 $v_1, dots, v_m$ 是 $V$ 的一组基。对于每个 $i in {1, dots, m}$,由于 $S v_i in range S subset.eq range T$,因此存在 $u_i in V$,使得 $T u_i = S v_i$。 + + #tab 根据线性映射引理(原书3.4),存在 $E in LinearMap(V, V)$,使得对于任意 $i in {1, dots, m}$,有 $E v_i = u_i$。设 $v in V$,将 $v$ 表示为 $v = a_1 v_1 + dots.c + a_m v_m$,其中 $a_1, dots, a_m in FF$。则 + + $ S v = S (sum_(k = 1)^m a_k v_k) = T (sum_(k = 1)^m a_k u_k) = T (sum_(k = 1)^m a_k E v_k) = T E v $ + + #tab 这说明 $S = T E$。 + + #tab 另一方面,现在假设存在 $E in LinearMap(V)$,使得 $S = T E$。设 $w in range S$,则存在 $v in V$,使得 $S v = w$。因此 + + $ w = S v = T E v = T (E v) in range T $ + + #tab 这说明 $range S subset.eq range T$。 + + #tab 综上所述,$range S subset.eq range T$,当且仅当,存在 $E in LinearMap(V)$,使得 $S = T E$。 +]