From d51c49c30a87e2abc07f18e7a87d10782ab03df3 Mon Sep 17 00:00:00 2001 From: szdytom Date: Thu, 14 Aug 2025 10:23:11 +0800 Subject: [PATCH] 3B 30 Signed-off-by: szdytom --- sections/3B.typ | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) diff --git a/sections/3B.typ b/sections/3B.typ index df4d390..a3e42c6 100644 --- a/sections/3B.typ +++ b/sections/3B.typ @@ -567,3 +567,19 @@ #tab 这说明,对于任意 $p in Poly(RR)$,都存在$q in Poly(RR)$,使得 $T q = p$,即 $5 q'' + 3q' = p$。 ] + +#exercise_sol(type: "proof")[ + 设 $phi in LinearMap(V, FF)$,$u in V$,满足 $phi != 0$ 且 $u in.not null phi$。证明: + + $ V = null phi plus.circle {a u : a in FF} $ +][ + 设 $v in V$,满足 $phi v != 0$。令 $k = (phi v) / (phi u) in FF$,则 $phi (k u) = phi v$,故 $phi (v - k u) = 0$,即 $v - k u in null phi$。因此 + + $ v = (v - k u) + k u $ + + #tab 其中 $v - k u in null phi$ 且 $k u in {a u : a in FF}$,故 $V = null phi + {a u : a in FF}$。现在说明这个和是直和:将 $0$ 表示为 $0 = v + w$,其中 $v in null phi$ 且 $w in {a u : a in FF}$,于是 + + $ phi 0 = phi (v + w) = phi w $ + + #tab 设 $w = a u$,则 $phi w = a phi u$,由于 $phi u != 0$,故 $a = 0$,即 $w = 0$。进一步,由于 $0 = v + w$,故 $v = 0$。根据直和的条件(原书1.45),得 $V = null phi plus.circle {a u : a in FF}$。 +]