better note

Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
方而静 2025-07-07 15:43:34 +08:00
parent d1d2e40590
commit dd9250ec4c
Signed by: szTom
GPG Key ID: 072D999D60C6473C
2 changed files with 13 additions and 9 deletions

View File

@ -30,7 +30,7 @@
&= alpha (beta lambda) $ &= alpha (beta lambda) $
] ]
#note[注:复数乘法的交换律由原书例1.4给出。] #note[复数乘法的交换律由原书例1.4给出。]
#exercise_sol(type: "proof")[ #exercise_sol(type: "proof")[
#tab 证明:$lambda (alpha + beta) = lambda alpha + lambda beta$ 对所有 $lambda,alpha,beta in CC$ 成立。 #tab 证明:$lambda (alpha + beta) = lambda alpha + lambda beta$ 对所有 $lambda,alpha,beta in CC$ 成立。
@ -68,7 +68,7 @@
$ beta = beta dot 1 = beta (alpha beta') = (beta alpha) beta' = 1 dot beta' = beta' $ $ beta = beta dot 1 = beta (alpha beta') = (beta alpha) beta' = 1 dot beta' = beta' $
] ]
#note[注:上面习题说明,$CC$ 构成一个域。] #note[上面习题说明,$CC$ 构成一个域。]
#exercise_sol(type: "proof")[ #exercise_sol(type: "proof")[
证明: 证明:
@ -116,7 +116,7 @@
#exercise_sol(type: "proof")[ #exercise_sol(type: "proof")[
证明:$(x+y)+z=x+(y+z)$ 对所有 $x,y,z in FF^n$ 成立。 证明:$(x+y)+z=x+(y+z)$ 对所有 $x,y,z in FF^n$ 成立。
#note[注:沿用原书记号1.6与记号1.10,即 $FF$ 表示 $RR$ $CC$$n$ 表示某一固定的正整数。下文不再赘述。] #note[沿用原书记号1.6与记号1.10,即 $FF$ 表示 $RR$ $CC$$n$ 表示某一固定的正整数。下文不再赘述。]
][ ][
#tab 根据定义,令 $x = (x_1, x_2, dots, x_n)$$y = (y_1, y_2, dots, y_n)$$z = (z_1, z_2, dots, z_n)$,则有: #tab 根据定义,令 $x = (x_1, x_2, dots, x_n)$$y = (y_1, y_2, dots, y_n)$$z = (z_1, z_2, dots, z_n)$,则有:
$ (x+y)+z &= ((x_1+y_1, x_2+y_2, dots, x_n+y_n) + (z_1, z_2, dots, z_n)) \ $ (x+y)+z &= ((x_1+y_1, x_2+y_2, dots, x_n+y_n) + (z_1, z_2, dots, z_n)) \
@ -125,7 +125,7 @@
&= x+(y+z) $ &= x+(y+z) $
] ]
#note[注:$FF^n$ 上向量的加法交换律由原书定理1.14给出。] #note[$FF^n$ 上向量的加法交换律由原书定理1.14给出。]
#exercise_sol(type: "proof")[ #exercise_sol(type: "proof")[
证明:$(a b)x = a(b x)$ 对所有 $x in FF^n$ $a,b in FF$ 成立。 证明:$(a b)x = a(b x)$ 对所有 $x in FF^n$ $a,b in FF$ 成立。
@ -173,11 +173,11 @@
原书定理1.14 原书定理1.14
/ 可结合性: \ / 可结合性: \
习题11 习题11
/ 加法恒等: \ / 加法单位: \
原书记号1.15定义了 $0$,其性质容易验证 原书记号1.15定义了 $0$,其性质容易验证
/ 加法逆元: \ / 加法逆元: \
原书定义1.17 原书定义1.17
/ 乘法恒等: \ / 乘法单位: \
习题13 习题13
/ 分配性质: \ / 分配性质: \
习题14和习题15 习题14和习题15

View File

@ -8,7 +8,7 @@
#let zhfont_fangsong = ("Zhuque Fangsong (technical preview)", "Noto Serif CJK SC") #let zhfont_fangsong = ("Zhuque Fangsong (technical preview)", "Noto Serif CJK SC")
#let monofont = ("Fira Code") #let monofont = ("Fira Code")
#let theme_color = color.blue #let theme_color = color.green
#let tab = h(2em) #let tab = h(2em)
#let halftab = h(1em) #let halftab = h(1em)
@ -108,7 +108,11 @@
body body
} }
#let note(body) = { #let note(body, supplement: "注") = {
if supplement != none {
text(supplement, 9pt, font: zhfont_sans, weight: "medium", fill: theme_color.darken(40%))
h(0.5em)
}
text(body, 9pt, font: zhfont_fangsong) text(body, 9pt, font: zhfont_fangsong)
} }
@ -214,7 +218,7 @@
body body
} }
#let exercise_sol(e, s, type: "proof") = { #let exercise_sol(e, s, type: "proof", label: none) = {
figure(e, kind: "exercise-problem", supplement: "习题") figure(e, kind: "exercise-problem", supplement: "习题")
s s
} }