mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
2A p12
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
6316be97e6
commit
de6c54d0fa
@ -1,4 +1,4 @@
|
||||
#import "../styles.typ": exercise_sol, tab, exercise_ref
|
||||
#import "../styles.typ": exercise_sol, tab, exercise_ref, math_numbering
|
||||
#import "../math.typ": span, ii
|
||||
|
||||
#exercise_sol(type: "answer")[
|
||||
@ -275,3 +275,39 @@
|
||||
|
||||
#tab 根据线性无关的定义(原书定义2.15),这表明向量组 $v_1 + w_1, v_2 + w_2$ 不是线性无关的,因此原命题不成立。
|
||||
]
|
||||
|
||||
#exercise_sol(type: "proof")[
|
||||
设 $v_1, dots, v_m$ 是 $V$ 中的线性无关向量组,且 $w in V$。证明:若向量组
|
||||
|
||||
$ v_1 + w, dots, v_m + w $
|
||||
|
||||
线性相关,则 $w in span(v_1, dots, v_m)$。
|
||||
][
|
||||
由于向量组 $v_1 + w, dots, v_m + w$ 线性相关,根据线性相关的定义(原书定义2.17),存在 $a_1, dots, a_m in FF$,使得
|
||||
|
||||
#show: math_numbering(true)
|
||||
$ a_1 (v_1 + w) + dots.c + a_m (v_m + w) = 0 $ <2A-vi-plus-w-is-dependent-def>
|
||||
#show: math_numbering(false)
|
||||
|
||||
#tab 其中 $a_1, dots, a_m$ 中至少有一个不为 $0$。
|
||||
|
||||
#tab 下面我们说明 $a_1 + dots.c + a_m != 0$。整理@2A-vi-plus-w-is-dependent-def 可得
|
||||
|
||||
$ a_1 v_1 + dots.c + a_m v_m + (a_1 + dots.c + a_m) w = 0 $
|
||||
|
||||
#tab 反证假设 $a_1 + dots.c + a_m = 0$,则 $a_1 v_1 + dots.c + a_m v_m = 0$,而这与线性无关的定义(原书定义2.15)矛盾。因此,我们只能有 $a_1 + dots.c + a_m != 0$。
|
||||
|
||||
#tab 所以,我们可以将@2A-vi-plus-w-is-dependent-def 改写为
|
||||
|
||||
$ w = -(a_1 v_1 + dots.c + a_m v_m) / (a_1 + dots.c + a_m) $
|
||||
|
||||
#tab 更进一步地,对于 $k in {1, dots, m}$,令
|
||||
|
||||
$ b_k = -a_k / (a_1 + dots.c + a_m) $
|
||||
|
||||
#tab 则有
|
||||
|
||||
$ w = b_1 v_1 + dots.c + b_m v_m $
|
||||
|
||||
#tab 根据张成空间的定义(原书定义2.4),这表明 $w in span(v_1, dots, v_m)$。
|
||||
]
|
||||
|
Loading…
x
Reference in New Issue
Block a user