mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-19 16:30:16 +00:00
3A p15
Signed-off-by: szdytom <szdytom@qq.com>
This commit is contained in:
parent
59bb3d5b67
commit
f3ee3fe44c
@ -369,3 +369,17 @@
|
|||||||
|
|
||||||
#tab 所以,根据#exercise_ref(<E-inf-dim-space-seq-characterization>),$LinearMap(V, W)$ 是无限维的。
|
#tab 所以,根据#exercise_ref(<E-inf-dim-space-seq-characterization>),$LinearMap(V, W)$ 是无限维的。
|
||||||
]
|
]
|
||||||
|
|
||||||
|
#exercise_sol(type: "proof")[
|
||||||
|
设 $v_1, dots, v_m$ 是 $V$ 中的线性相关向量组,$dim W > 0$。证明:存在 $w_1, dots, w_m in W$,使得不存在 $T in LinearMap(V, W)$ 对于任意 $k in {1, dots, m}$,都有 $T v_k = w_k$。
|
||||||
|
][
|
||||||
|
根据线性相关性引理(原书2.19),存在 $k in {1, dots, m}$,使得 $v_k in span(v_1, dots, v_(k - 1))$。设
|
||||||
|
|
||||||
|
$ v_k = a_1 v_1 + dots.c + a_(k - 1) v_(k - 1) $
|
||||||
|
|
||||||
|
#tab 其中 $a_1, dots, a_(k - 1) in FF$。任取 $w_k != 0$,并令 $w_1 = dots.c = w_(k - 1) = 0$。于是
|
||||||
|
|
||||||
|
$ T v_k = a_1 T v_1 + dots.c + a_(k - 1) T v_(k - 1) = 0 != w_k $
|
||||||
|
|
||||||
|
#tab 这说明不存在 $T in LinearMap(V, W)$,使得对于任意 $k in {1, dots, m}$,都有 $T v_k = w_k$。
|
||||||
|
]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user