From faa17267a65e651e92e2850fd00ba2bf257eb37b Mon Sep 17 00:00:00 2001 From: szdytom Date: Mon, 8 Sep 2025 15:29:07 +0800 Subject: [PATCH] 3C p3 Signed-off-by: szdytom --- sections/3C.typ | 21 +++++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/sections/3C.typ b/sections/3C.typ index 5fabd7a..f5d753b 100644 --- a/sections/3C.typ +++ b/sections/3C.typ @@ -40,3 +40,24 @@ #tab 由于 $w_1, dots, w_m$ 线性无关,因此对于 $k in {1, dots, m}$,都有 $A_(k, j) = 1$。因此,$Matrix(T)$ 的所有元素都是 $1$。 ] + +#exercise_sol(type: "proof")[ + 设 $v_1, dots, v_n$ 是 $V$ 的一组基,$w_1, dots, w_m$ 是 $W$ 的一组基。证明: + + + 若 $S, T in LinearMap(V, W)$,则 $M(S + T) = M(S) + M(T)$; + + 若 $lambda in FF$,$T in LinearMap(V, W)$,则 $M(lambda T) = lambda M(T) $。 + + #note[本题是在让你验证原书3.35和3.38。] +][ + 对于(a),记 $A = M(S)$,$B = M(T)$,$C = M(S + T)$。则对于 $j in {1, dots, n}$,有 + + $ sum_(k=1)^m C_(k, j) w_k = (S + T) v_j = S v_j + T v_j = sum_(k=1)^m (A_(k, j) + B_(k, j)) w_k $ + + #tab 故 $C_(k, j) = A_(k, j) + B_(k, j)$,即 $C = A + B$。 + + #tab 对于(b),记 $A = M(T)$,$B = M(lambda T)$。则对于 $j in {1, dots, n}$,有 + + $ sum_(k=1)^m B_(k, j) w_k = (lambda T) v_j = lambda (T v_j) = sum_(k=1)^m (lambda A_(k, j)) w_k $ + + #tab 故 $B_(k, j) = lambda A_(k, j)$,即 $B = lambda A$。 +]