mirror of
https://github.com/szdytom/LADRSolutions.git
synced 2025-10-20 00:40:16 +00:00
28 lines
788 B
Typst
28 lines
788 B
Typst
#import "../styles.typ": exercise_sol, tab
|
||
#import "../math.typ": null, range, LinearMap
|
||
|
||
#exercise_sol(type: "answer")[
|
||
给出一例:满足 $dim null T = 3$ 且 $dim range T = 2$ 的线性映射 $T$。
|
||
][
|
||
令
|
||
|
||
$ T:& RR^5 -> RR^2 \ &(x_1, x_2, x_3, x_4, x_5) |-> (x_1, x_2) $
|
||
|
||
#tab 根据定义
|
||
|
||
$ range T &= RR^2 \
|
||
null T &= {(0, 0, x, y, z) in RR^5 : x, y, z in RR} $
|
||
|
||
#tab 于是 $dim null T = 3$ 且 $dim range T = 2$。
|
||
]
|
||
|
||
#exercise_sol(type: "proof")[
|
||
设 $S, T in LinearMap(V)$ 使得 $range S subset.eq null T$,证明:$(S T)^2 = 0$。
|
||
][
|
||
设 $v in V$。考虑到 $S (T v) in range S subset.eq null T$,根据定义,$ T S T v = 0$。根据线性映射将 $0$ 映射到 $0$(原书3.10),
|
||
|
||
$ (S T)^2 v = S (T S T) v = S 0 = 0 $
|
||
|
||
因此 $(S T)^2 = 0$。
|
||
]
|