chectus/chectus_net/train.py
2024-07-28 15:25:53 +08:00

83 lines
2.6 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
import os
from model import resnet18, ChessPredictModelBaby, ChessPredictModelS
from dataloader import create_dataloader
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(model, criterion, optimizer, train_loader, val_loader, num_epochs=10, patience=3, model_path='best_model.pth'):
best_loss = float('inf')
epochs_no_improve = 0
if os.path.exists(model_path):
model.load_state_dict(torch.load(model_path, weights_only=True))
print(f"Loaded saved model from {model_path}")
print('Started training')
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
train_loader_tqdm = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Training]", unit="batch")
for inputs, labels in train_loader_tqdm:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.squeeze(1), labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
train_loss /= len(train_loader.dataset)
model.eval()
val_loss = 0.0
with torch.no_grad():
val_loader_tqdm = tqdm(val_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Validation]", unit="batch")
for inputs, labels in val_loader_tqdm:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = criterion(outputs.squeeze(1), labels)
val_loss += loss.item() * inputs.size(0)
val_loss /= len(val_loader.dataset)
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}')
# Check for overfitting
if val_loss < best_loss:
best_loss = val_loss
epochs_no_improve = 0
torch.save(model.state_dict(), model_path)
print('Model saved!')
else:
epochs_no_improve += 1
if epochs_no_improve == patience:
print('Early stopping!')
break
if __name__ == "__main__":
batch_size = 256
num_epochs = 50
learning_rate = 0.001
patience = 2
model_path = 'best_model.pth'
weight_decay = 0
print('Loading Data')
train_loader = create_dataloader(table_name='train', batch_size=batch_size, shuffle=True, num_workers=3)
val_loader = create_dataloader(table_name='test', batch_size=batch_size, shuffle=False, num_workers=3)
print('Loaded Data')
model = ChessPredictModelS().half().to(device)
criterion = nn.SmoothL1Loss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
train(model, criterion, optimizer, train_loader, val_loader, num_epochs=num_epochs, patience=patience, model_path=model_path)