upload chapter2 homework
This commit is contained in:
parent
9f3ddf28d7
commit
0ce09fc1c5
16
homework/chapter2/65.c
Normal file
16
homework/chapter2/65.c
Normal file
@ -0,0 +1,16 @@
|
||||
#include <stdio.h>
|
||||
|
||||
/* Return 1 when x contains an odd number of 1s; 0 otherwise.
|
||||
Assume w=32 */
|
||||
int odd_ones(unsigned x) {
|
||||
x = x ^ (x >> 16);
|
||||
x = x ^ (x >> 8);
|
||||
x = x ^ (x >> 4);
|
||||
x = x ^ (x >> 2);
|
||||
x = x ^ (x >> 1);
|
||||
return x & 1;
|
||||
}
|
||||
|
||||
int main() {
|
||||
printf("%d %d\n", odd_ones(0xF1F1F0F1), odd_ones(0xFF00AAAA));
|
||||
}
|
26
homework/chapter2/66.c
Normal file
26
homework/chapter2/66.c
Normal file
@ -0,0 +1,26 @@
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
* Generate mask indicating leftmost 1 in x. Assume w=32.
|
||||
* For example, 0xFF00 -> 0x8000, and 0x6600 --> 0x4000.
|
||||
* If x = 0, then return 0.
|
||||
*/
|
||||
int leftmost_one(unsigned x) {
|
||||
unsigned t = x;
|
||||
t = t >> 1;
|
||||
|
||||
t = t | (t >> 1);
|
||||
t = t | (t >> 2);
|
||||
t = t | (t >> 4);
|
||||
t = t | (t >> 8);
|
||||
t = t | (t >> 16);
|
||||
|
||||
return (t + 1) & x;
|
||||
}
|
||||
|
||||
int main() {
|
||||
printf("%.8X %.8X\n", 0x06050403, leftmost_one(0x06050403));
|
||||
printf("%.8X %.8X\n", 0xF0F0F0F0, leftmost_one(0xF0F0F0F0));
|
||||
printf("%.8X %.8X\n", 0x00000000, leftmost_one(0x00000000));
|
||||
printf("%.8X %.8X\n", 0x00000001, leftmost_one(0x00000001));
|
||||
}
|
23
homework/chapter2/75.c
Normal file
23
homework/chapter2/75.c
Normal file
@ -0,0 +1,23 @@
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
|
||||
int signed_high_prod(int x, int y) {
|
||||
long long p = (long long) x * y;
|
||||
return p >> 32;
|
||||
}
|
||||
|
||||
unsigned unsigned_high_prod(unsigned x, unsigned y) {
|
||||
int w = sizeof(int) << 3;
|
||||
return signed_high_prod(x, y) + (((int) y >> (w - 1)) & x) + (((int) x >> (w - 1)) & y);
|
||||
}
|
||||
|
||||
int main() {
|
||||
unsigned x = 0x71827364, y = 0xF0E1D2C3;
|
||||
assert((unsigned long long) x * y == ((unsigned long long) unsigned_high_prod(x, y) << 32) + x * y);
|
||||
x = 0x91827364, y = 0xF0E1D2C3;
|
||||
assert((unsigned long long) x * y == ((unsigned long long) unsigned_high_prod(x, y) << 32) + x * y);
|
||||
x = 0x71827364, y = 0x60E1D2C3;
|
||||
assert((unsigned long long) x * y == ((unsigned long long) unsigned_high_prod(x, y) << 32) + x * y);
|
||||
x = 0x91827364, y = 0x60E1D2C3;
|
||||
assert((unsigned long long) x * y == ((unsigned long long) unsigned_high_prod(x, y) << 32) + x * y);
|
||||
}
|
20
homework/chapter2/80.c
Normal file
20
homework/chapter2/80.c
Normal file
@ -0,0 +1,20 @@
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
int threefourths(int x) {
|
||||
int p = x >> 2, q = x & 3;
|
||||
return p + (p << 1) + q + ((!q | (x >> 31)) & 1) - 1;
|
||||
}
|
||||
|
||||
int main() {
|
||||
int x = 0x88659612;
|
||||
for (int i = 0; i < 100; i++) {
|
||||
x++;
|
||||
assert(threefourths(x) == (long long) x * 3 / 4);
|
||||
}
|
||||
x = 0x79642695;
|
||||
for (int i = 0; i < 100; i++) {
|
||||
x++;
|
||||
assert(threefourths(x) == (long long) x * 3 / 4);
|
||||
}
|
||||
}
|
21
homework/chapter2/README.md
Normal file
21
homework/chapter2/README.md
Normal file
@ -0,0 +1,21 @@
|
||||
## 2.65
|
||||
定义一次操作为将 $w$ 位的整数 $x$ 从中间分成两个 $\frac{w}{2}$ 位的整数 $y$ 和 $z$,接着令 `x=y^z`。进行该操作 5 次后得到答案。
|
||||
|
||||
我们将这样的思路称为“折半递归法”。
|
||||
## 2.66
|
||||
第一次操作,我们令 `x = x | (x >> 1)`,这样 $x$ 的最高位所在 `1` 连续段长度必然不小于 2。
|
||||
|
||||
第二次操作,令 `x = x | (x >> 2)`,依次类推。通过 5 次操作即可实现提示中的转换。
|
||||
## 2.75
|
||||
$x,y$ 是无符号整数,$x'=U2T_w(x),y'=U2T_w(y)$。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
x'\times y'&=(x+x_{w-1}2^w)\times(y+y_{w-1}2^w)\\
|
||||
&=x\times y+(x_{w-1}\times y+y_{w-1}\times x)2^w+x_{w-1}y_{w-1}2^{2w}
|
||||
\end{aligned}$$
|
||||
|
||||
因此有 $U2B_{2w}(x'\times y')=T2B_{2w}(x\times y+(x_{w-1}\times y+y_{w-1}\times x)2^w)$。即令 `a = signed_high_prod(x, y), b = unsigned_high_prod(x', y')`,$T2B_w(a+x_{w-1}\times y+y_{w-1}\times x)=U2B_w(b)$。
|
||||
|
||||
## 2.80
|
||||
先得到粗糙的答案 `(x >> 2) + ((x >> 2) << 1)`,再根据 `x & 3` 进行修正。
|
Loading…
x
Reference in New Issue
Block a user