CSAPP-sol/perf/driver.c

753 lines
19 KiB
C

/*******************************************************************
*
* driver.c - Driver program for CS:APP Performance Lab
*
* In kernels.c, students generate an arbitrary number of rotate and
* smooth test functions, which they then register with the driver
* program using the add_rotate_function() and add_smooth_function()
* functions.
*
* The driver program runs and measures the registered test functions
* and reports their performance.
*
* Copyright (c) 2002, R. Bryant and D. O'Hallaron, All rights
* reserved. May not be used, modified, or copied without permission.
*
********************************************************************/
#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <assert.h>
#include <math.h>
#include "fcyc.h"
#include "defs.h"
#include "config.h"
/* Team structure that identifies the students */
extern team_t team;
/* Keep track of a number of different test functions */
#define MAX_BENCHMARKS 100
#define DIM_CNT 5
/* Misc constants */
#define BSIZE 32 /* cache block size in bytes */
#define MAX_DIM 1280 /* 1024 + 256 */
#define ODD_DIM 96 /* not a power of 2 */
/* fast versions of min and max */
#define min(a,b) (a < b ? a : b)
#define max(a,b) (a > b ? a : b)
/* This struct characterizes the results for one benchmark test */
typedef struct {
lab_test_func tfunct; /* The test function */
double cpes[DIM_CNT]; /* One CPE result for each dimension */
char *description; /* ASCII description of the test function */
unsigned short valid; /* The function is tested if this is non zero */
} bench_t;
/* The range of image dimensions that we will be testing */
static int test_dim_rotate[] = {64, 128, 256, 512, 1024};
static int test_dim_smooth[] = {32, 64, 128, 256, 512};
/* Baseline CPEs (see config.h) */
static double rotate_baseline_cpes[] = {R64, R128, R256, R512, R1024};
static double smooth_baseline_cpes[] = {S32, S64, S128, S256, S512};
/* These hold the results for all benchmarks */
static bench_t benchmarks_rotate[MAX_BENCHMARKS];
static bench_t benchmarks_smooth[MAX_BENCHMARKS];
/* These give the sizes of the above lists */
static int rotate_benchmark_count = 0;
static int smooth_benchmark_count = 0;
/*
* An image is a dimxdim matrix of pixels stored in a 1D array. The
* data array holds three images (the input original, a copy of the original,
* and the output result array. There is also an additional BSIZE bytes
* of padding for alignment to cache block boundaries.
*/
static pixel data[(3*MAX_DIM*MAX_DIM) + (BSIZE/sizeof(pixel))];
/* Various image pointers */
static pixel *orig = NULL; /* original image */
static pixel *copy_of_orig = NULL; /* copy of original for checking result */
static pixel *result = NULL; /* result image */
/* Keep track of the best rotate and smooth score for grading */
double rotate_maxmean = 0.0;
char *rotate_maxmean_desc = NULL;
double smooth_maxmean = 0.0;
char *smooth_maxmean_desc = NULL;
/******************** Functions begin *************************/
void add_smooth_function(lab_test_func f, char *description)
{
benchmarks_smooth[smooth_benchmark_count].tfunct = f;
benchmarks_smooth[smooth_benchmark_count].description = description;
benchmarks_smooth[smooth_benchmark_count].valid = 0;
smooth_benchmark_count++;
}
void add_rotate_function(lab_test_func f, char *description)
{
benchmarks_rotate[rotate_benchmark_count].tfunct = f;
benchmarks_rotate[rotate_benchmark_count].description = description;
benchmarks_rotate[rotate_benchmark_count].valid = 0;
rotate_benchmark_count++;
}
/*
* random_in_interval - Returns random integer in interval [low, high)
*/
static int random_in_interval(int low, int high)
{
int size = high - low;
return (rand()% size) + low;
}
/*
* create - creates a dimxdim image aligned to a BSIZE byte boundary
*/
static void create(int dim)
{
int i, j;
/* Align the images to BSIZE byte boundaries */
orig = data;
while ((unsigned)orig % BSIZE)
orig = (pixel *)((char *)orig) + 1;
result = orig + dim*dim;
copy_of_orig = result + dim*dim;
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++) {
/* Original image initialized to random colors */
orig[RIDX(i,j,dim)].red = random_in_interval(0, 65536);
orig[RIDX(i,j,dim)].green = random_in_interval(0, 65536);
orig[RIDX(i,j,dim)].blue = random_in_interval(0, 65536);
/* Copy of original image for checking result */
copy_of_orig[RIDX(i,j,dim)].red = orig[RIDX(i,j,dim)].red;
copy_of_orig[RIDX(i,j,dim)].green = orig[RIDX(i,j,dim)].green;
copy_of_orig[RIDX(i,j,dim)].blue = orig[RIDX(i,j,dim)].blue;
/* Result image initialized to all black */
result[RIDX(i,j,dim)].red = 0;
result[RIDX(i,j,dim)].green = 0;
result[RIDX(i,j,dim)].blue = 0;
}
}
return;
}
/*
* compare_pixels - Returns 1 if the two arguments don't have same RGB
* values, 0 o.w.
*/
static int compare_pixels(pixel p1, pixel p2)
{
return
(p1.red != p2.red) ||
(p1.green != p2.green) ||
(p1.blue != p2.blue);
}
/* Make sure the orig array is unchanged */
static int check_orig(int dim)
{
int i, j;
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
if (compare_pixels(orig[RIDX(i,j,dim)], copy_of_orig[RIDX(i,j,dim)])) {
printf("\n");
printf("Error: Original image has been changed!\n");
return 1;
}
return 0;
}
/*
* check_rotate - Make sure the rotate actually works.
* The orig array should not have been tampered with!
*/
static int check_rotate(int dim)
{
int err = 0;
int i, j;
int badi = 0;
int badj = 0;
pixel orig_bad, res_bad;
/* return 1 if the original image has been changed */
if (check_orig(dim))
return 1;
for (i = 0; i < dim; i++)
for (j = 0; j < dim; j++)
if (compare_pixels(orig[RIDX(i,j,dim)],
result[RIDX(dim-1-j,i,dim)])) {
err++;
badi = i;
badj = j;
orig_bad = orig[RIDX(i,j,dim)];
res_bad = result[RIDX(dim-1-j,i,dim)];
}
if (err) {
printf("\n");
printf("ERROR: Dimension=%d, %d errors\n", dim, err);
printf("E.g., The following two pixels should have equal value:\n");
printf("src[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
badi, badj, orig_bad.red, orig_bad.green, orig_bad.blue);
printf("dst[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
(dim-1-badj), badi, res_bad.red, res_bad.green, res_bad.blue);
}
return err;
}
static pixel check_average(int dim, int i, int j, pixel *src) {
pixel result;
int num = 0;
int ii, jj;
int sum0, sum1, sum2;
int top_left_i, top_left_j;
int bottom_right_i, bottom_right_j;
top_left_i = max(i-1, 0);
top_left_j = max(j-1, 0);
bottom_right_i = min(i+1, dim-1);
bottom_right_j = min(j+1, dim-1);
sum0 = sum1 = sum2 = 0;
for(ii=top_left_i; ii <= bottom_right_i; ii++) {
for(jj=top_left_j; jj <= bottom_right_j; jj++) {
num++;
sum0 += (int) src[RIDX(ii,jj,dim)].red;
sum1 += (int) src[RIDX(ii,jj,dim)].green;
sum2 += (int) src[RIDX(ii,jj,dim)].blue;
}
}
result.red = (unsigned short) (sum0/num);
result.green = (unsigned short) (sum1/num);
result.blue = (unsigned short) (sum2/num);
return result;
}
/*
* check_smooth - Make sure the smooth function actually works. The
* orig array should not have been tampered with!
*/
static int check_smooth(int dim) {
int err = 0;
int i, j;
int badi = 0;
int badj = 0;
pixel right, wrong;
/* return 1 if original image has been changed */
if (check_orig(dim))
return 1;
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++) {
pixel smoothed = check_average(dim, i, j, orig);
if (compare_pixels(result[RIDX(i,j,dim)], smoothed)) {
err++;
badi = i;
badj = j;
wrong = result[RIDX(i,j,dim)];
right = smoothed;
}
}
}
if (err) {
printf("\n");
printf("ERROR: Dimension=%d, %d errors\n", dim, err);
printf("E.g., \n");
printf("You have dst[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
badi, badj, wrong.red, wrong.green, wrong.blue);
printf("It should be dst[%d][%d].{red,green,blue} = {%d,%d,%d}\n",
badi, badj, right.red, right.green, right.blue);
}
return err;
}
void func_wrapper(void *arglist[])
{
pixel *src, *dst;
int mydim;
lab_test_func f;
f = (lab_test_func) arglist[0];
mydim = *((int *) arglist[1]);
src = (pixel *) arglist[2];
dst = (pixel *) arglist[3];
(*f)(mydim, src, dst);
return;
}
void run_rotate_benchmark(int idx, int dim)
{
benchmarks_rotate[idx].tfunct(dim, orig, result);
}
void test_rotate(int bench_index)
{
int i;
int test_num;
char *description = benchmarks_rotate[bench_index].description;
for (test_num = 0; test_num < DIM_CNT; test_num++) {
int dim;
/* Check for odd dimension */
create(ODD_DIM);
run_rotate_benchmark(bench_index, ODD_DIM);
if (check_rotate(ODD_DIM)) {
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
benchmarks_rotate[bench_index].description, ODD_DIM);
return;
}
/* Create a test image of the required dimension */
dim = test_dim_rotate[test_num];
create(dim);
#ifdef DEBUG
printf("DEBUG: Running benchmark \"%s\"\n", benchmarks_rotate[bench_index].description);
#endif
/* Check that the code works */
run_rotate_benchmark(bench_index, dim);
if (check_rotate(dim)) {
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
benchmarks_rotate[bench_index].description, dim);
return;
}
/* Measure CPE */
{
double num_cycles, cpe;
int tmpdim = dim;
void *arglist[4];
double dimension = (double) dim;
double work = dimension*dimension;
#ifdef DEBUG
printf("DEBUG: dimension=%.1f\n",dimension);
printf("DEBUG: work=%.1f\n",work);
#endif
arglist[0] = (void *) benchmarks_rotate[bench_index].tfunct;
arglist[1] = (void *) &tmpdim;
arglist[2] = (void *) orig;
arglist[3] = (void *) result;
create(dim);
num_cycles = fcyc_v((test_funct_v)&func_wrapper, arglist);
cpe = num_cycles/work;
benchmarks_rotate[bench_index].cpes[test_num] = cpe;
}
}
/*
* Print results as a table
*/
printf("Rotate: Version = %s:\n", description);
printf("Dim\t");
for (i = 0; i < DIM_CNT; i++)
printf("\t%d", test_dim_rotate[i]);
printf("\tMean\n");
printf("Your CPEs");
for (i = 0; i < DIM_CNT; i++) {
printf("\t%.1f", benchmarks_rotate[bench_index].cpes[i]);
}
printf("\n");
printf("Baseline CPEs");
for (i = 0; i < DIM_CNT; i++) {
printf("\t%.1f", rotate_baseline_cpes[i]);
}
printf("\n");
/* Compute Speedup */
{
double prod, ratio, mean;
prod = 1.0; /* Geometric mean */
printf("Speedup\t");
for (i = 0; i < DIM_CNT; i++) {
if (benchmarks_rotate[bench_index].cpes[i] > 0.0) {
ratio = rotate_baseline_cpes[i]/
benchmarks_rotate[bench_index].cpes[i];
}
else {
printf("Fatal Error: Non-positive CPE value...\n");
exit(EXIT_FAILURE);
}
prod *= ratio;
printf("\t%.1f", ratio);
}
/* Geometric mean */
mean = pow(prod, 1.0/(double) DIM_CNT);
printf("\t%.1f", mean);
printf("\n\n");
if (mean > rotate_maxmean) {
rotate_maxmean = mean;
rotate_maxmean_desc = benchmarks_rotate[bench_index].description;
}
}
#ifdef DEBUG
fflush(stdout);
#endif
return;
}
void run_smooth_benchmark(int idx, int dim)
{
benchmarks_smooth[idx].tfunct(dim, orig, result);
}
void test_smooth(int bench_index)
{
int i;
int test_num;
char *description = benchmarks_smooth[bench_index].description;
for(test_num=0; test_num < DIM_CNT; test_num++) {
int dim;
/* Check correctness for odd (non power of two dimensions */
create(ODD_DIM);
run_smooth_benchmark(bench_index, ODD_DIM);
if (check_smooth(ODD_DIM)) {
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
benchmarks_smooth[bench_index].description, ODD_DIM);
return;
}
/* Create a test image of the required dimension */
dim = test_dim_smooth[test_num];
create(dim);
#ifdef DEBUG
printf("DEBUG: Running benchmark \"%s\"\n", benchmarks_smooth[bench_index].description);
#endif
/* Check that the code works */
run_smooth_benchmark(bench_index, dim);
if (check_smooth(dim)) {
printf("Benchmark \"%s\" failed correctness check for dimension %d.\n",
benchmarks_smooth[bench_index].description, dim);
return;
}
/* Measure CPE */
{
double num_cycles, cpe;
int tmpdim = dim;
void *arglist[4];
double dimension = (double) dim;
double work = dimension*dimension;
#ifdef DEBUG
printf("DEBUG: dimension=%.1f\n",dimension);
printf("DEBUG: work=%.1f\n",work);
#endif
arglist[0] = (void *) benchmarks_smooth[bench_index].tfunct;
arglist[1] = (void *) &tmpdim;
arglist[2] = (void *) orig;
arglist[3] = (void *) result;
create(dim);
num_cycles = fcyc_v((test_funct_v)&func_wrapper, arglist);
cpe = num_cycles/work;
benchmarks_smooth[bench_index].cpes[test_num] = cpe;
}
}
/* Print results as a table */
printf("Smooth: Version = %s:\n", description);
printf("Dim\t");
for (i = 0; i < DIM_CNT; i++)
printf("\t%d", test_dim_smooth[i]);
printf("\tMean\n");
printf("Your CPEs");
for (i = 0; i < DIM_CNT; i++) {
printf("\t%.1f", benchmarks_smooth[bench_index].cpes[i]);
}
printf("\n");
printf("Baseline CPEs");
for (i = 0; i < DIM_CNT; i++) {
printf("\t%.1f", smooth_baseline_cpes[i]);
}
printf("\n");
/* Compute speedup */
{
double prod, ratio, mean;
prod = 1.0; /* Geometric mean */
printf("Speedup\t");
for (i = 0; i < DIM_CNT; i++) {
if (benchmarks_smooth[bench_index].cpes[i] > 0.0) {
ratio = smooth_baseline_cpes[i]/
benchmarks_smooth[bench_index].cpes[i];
}
else {
printf("Fatal Error: Non-positive CPE value...\n");
exit(EXIT_FAILURE);
}
prod *= ratio;
printf("\t%.1f", ratio);
}
/* Geometric mean */
mean = pow(prod, 1.0/(double) DIM_CNT);
printf("\t%.1f", mean);
printf("\n\n");
if (mean > smooth_maxmean) {
smooth_maxmean = mean;
smooth_maxmean_desc = benchmarks_smooth[bench_index].description;
}
}
return;
}
void usage(char *progname)
{
fprintf(stderr, "Usage: %s [-hqg] [-f <func_file>] [-d <dump_file>]\n", progname);
fprintf(stderr, "Options:\n");
fprintf(stderr, " -h Print this message\n");
fprintf(stderr, " -q Quit after dumping (use with -d )\n");
fprintf(stderr, " -g Autograder mode: checks only rotate() and smooth()\n");
fprintf(stderr, " -f <file> Get test function names from dump file <file>\n");
fprintf(stderr, " -d <file> Emit a dump file <file> for later use with -f\n");
exit(EXIT_FAILURE);
}
int main(int argc, char *argv[])
{
int i;
int quit_after_dump = 0;
int skip_teamname_check = 0;
int autograder = 0;
int seed = 1729;
char c = '0';
char *bench_func_file = NULL;
char *func_dump_file = NULL;
/* register all the defined functions */
register_rotate_functions();
register_smooth_functions();
/* parse command line args */
while ((c = getopt(argc, argv, "tgqf:d:s:h")) != -1)
switch (c) {
case 't': /* skip team name check (hidden flag) */
skip_teamname_check = 1;
break;
case 's': /* seed for random number generator (hidden flag) */
seed = atoi(optarg);
break;
case 'g': /* autograder mode (checks only rotate() and smooth()) */
autograder = 1;
break;
case 'q':
quit_after_dump = 1;
break;
case 'f': /* get names of benchmark functions from this file */
bench_func_file = strdup(optarg);
break;
case 'd': /* dump names of benchmark functions to this file */
func_dump_file = strdup(optarg);
{
int i;
FILE *fp = fopen(func_dump_file, "w");
if (fp == NULL) {
printf("Can't open file %s\n",func_dump_file);
exit(-5);
}
for(i = 0; i < rotate_benchmark_count; i++) {
fprintf(fp, "R:%s\n", benchmarks_rotate[i].description);
}
for(i = 0; i < smooth_benchmark_count; i++) {
fprintf(fp, "S:%s\n", benchmarks_smooth[i].description);
}
fclose(fp);
}
break;
case 'h': /* print help message */
usage(argv[0]);
default: /* unrecognized argument */
usage(argv[0]);
}
if (quit_after_dump)
exit(EXIT_SUCCESS);
/* Print team info */
if (!skip_teamname_check) {
if (strcmp("bovik", team.team) == 0) {
printf("%s: Please fill in the team struct in kernels.c.\n", argv[0]);
exit(1);
}
printf("Teamname: %s\n", team.team);
printf("Member 1: %s\n", team.name1);
printf("Email 1: %s\n", team.email1);
if (*team.name2 || *team.email2) {
printf("Member 2: %s\n", team.name2);
printf("Email 2: %s\n", team.email2);
}
printf("\n");
}
srand(seed);
/*
* If we are running in autograder mode, we will only test
* the rotate() and bench() functions.
*/
if (autograder) {
rotate_benchmark_count = 1;
smooth_benchmark_count = 1;
benchmarks_rotate[0].tfunct = rotate;
benchmarks_rotate[0].description = "rotate() function";
benchmarks_rotate[0].valid = 1;
benchmarks_smooth[0].tfunct = smooth;
benchmarks_smooth[0].description = "smooth() function";
benchmarks_smooth[0].valid = 1;
}
/*
* If the user specified a file name using -f, then use
* the file to determine the versions of rotate and smooth to test
*/
else if (bench_func_file != NULL) {
char flag;
char func_line[256];
FILE *fp = fopen(bench_func_file, "r");
if (fp == NULL) {
printf("Can't open file %s\n",bench_func_file);
exit(-5);
}
while(func_line == fgets(func_line, 256, fp)) {
char *func_name = func_line;
char **strptr = &func_name;
char *token = strsep(strptr, ":");
flag = token[0];
func_name = strsep(strptr, "\n");
#ifdef DEBUG
printf("Function Description is %s\n",func_name);
#endif
if (flag == 'R') {
for(i=0; i<rotate_benchmark_count; i++) {
if (strcmp(benchmarks_rotate[i].description, func_name) == 0)
benchmarks_rotate[i].valid = 1;
}
}
else if (flag == 'S') {
for(i=0; i<smooth_benchmark_count; i++) {
if (strcmp(benchmarks_smooth[i].description, func_name) == 0)
benchmarks_smooth[i].valid = 1;
}
}
}
fclose(fp);
}
/*
* If the user didn't specify a dump file using -f, then
* test all of the functions
*/
else { /* set all valid flags to 1 */
for (i = 0; i < rotate_benchmark_count; i++)
benchmarks_rotate[i].valid = 1;
for (i = 0; i < smooth_benchmark_count; i++)
benchmarks_smooth[i].valid = 1;
}
/* Set measurement (fcyc) parameters */
set_fcyc_cache_size(1 << 14); /* 16 KB cache size */
set_fcyc_clear_cache(1); /* clear the cache before each measurement */
set_fcyc_compensate(1); /* try to compensate for timer overhead */
for (i = 0; i < rotate_benchmark_count; i++) {
if (benchmarks_rotate[i].valid)
test_rotate(i);
}
for (i = 0; i < smooth_benchmark_count; i++) {
if (benchmarks_smooth[i].valid)
test_smooth(i);
}
if (autograder) {
printf("\nbestscores:%.1f:%.1f:\n", rotate_maxmean, smooth_maxmean);
}
else {
printf("Summary of Your Best Scores:\n");
printf(" Rotate: %3.1f (%s)\n", rotate_maxmean, rotate_maxmean_desc);
printf(" Smooth: %3.1f (%s)\n", smooth_maxmean, smooth_maxmean_desc);
}
return 0;
}