fix linux_aarch64 stdint redefine

This commit is contained in:
PrimedErwin 2025-05-15 21:04:28 +08:00
parent 7da0afb59f
commit 945f614b98
44 changed files with 185 additions and 198 deletions

View File

@ -5,8 +5,6 @@
extern "C" {
#endif
#define __NEED_float_t
#define __NEED_double_t
#ifndef _HUGE_ENUF
#define _HUGE_ENUF 1e+300 // _HUGE_ENUF*_HUGE_ENUF must overflow
@ -62,17 +60,6 @@ extern "C" {
#define predict_true(x) (x)
#define predict_false(x) (x)
typedef signed char int8_t;
typedef short int16_t;
typedef int int32_t;
typedef long long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;
typedef float float_t;
typedef double double_t;
int __fpclassify(double);
int __fpclassifyf(float);
int __fpclassifyl(long double);
@ -107,7 +94,7 @@ static __inline unsigned long long __DOUBLE_BITS(double __f)
#define isnormal(x) ( \
sizeof(x) == sizeof(float) ? ((__FLOAT_BITS(x)+0x00800000) & 0x7fffffff) >= 0x01000000 : \
sizeof(x) == sizeof(double) ? ((__DOUBLE_BITS(x)+(1ULL<<52)) & -1ULL>>1) >= 1ULL<<53 : \
sizeof(x) == sizeof(double) ? ((__DOUBLE_BITS(x)+(1ULL<<52)) & ULLONG_SHIFT1) >= 1ULL<<53 : \
__fpclassifyl(x) == FP_NORMAL)
#define isfinite(x) ( \
@ -130,20 +117,20 @@ int __signbitl(long double);
static __inline int __is##rel(type __x, type __y) \
{ return !isunordered(__x,__y) && __x op __y; }
__ISREL_DEF(lessf, <, float_t)
__ISREL_DEF(less, <, double_t)
__ISREL_DEF(lessf, <, float)
__ISREL_DEF(less, <, double)
__ISREL_DEF(lessl, <, long double)
__ISREL_DEF(lessequalf, <=, float_t)
__ISREL_DEF(lessequal, <=, double_t)
__ISREL_DEF(lessequalf, <=, float)
__ISREL_DEF(lessequal, <=, double)
__ISREL_DEF(lessequall, <=, long double)
__ISREL_DEF(lessgreaterf, !=, float_t)
__ISREL_DEF(lessgreater, !=, double_t)
__ISREL_DEF(lessgreaterf, !=, float)
__ISREL_DEF(lessgreater, !=, double)
__ISREL_DEF(lessgreaterl, !=, long double)
__ISREL_DEF(greaterf, >, float_t)
__ISREL_DEF(greater, >, double_t)
__ISREL_DEF(greaterf, >, float)
__ISREL_DEF(greater, >, double)
__ISREL_DEF(greaterl, >, long double)
__ISREL_DEF(greaterequalf, >=, float_t)
__ISREL_DEF(greaterequal, >=, double_t)
__ISREL_DEF(greaterequalf, >=, float)
__ISREL_DEF(greaterequal, >=, double)
__ISREL_DEF(greaterequall, >=, long double)
#define __tg_pred_2(x, y, p) ( \
@ -248,10 +235,10 @@ static inline void fp_force_evall(long double x)
} \
} while(0)
typedef union {float _f; uint32_t _i;}asuint_union;
typedef union {uint32_t _i; float _f;}asfloat_union;
typedef union {double _f; uint64_t _i;}asuint64_union;
typedef union {uint64_t _i; double _f;}asdouble_union;
typedef union {float _f; unsigned int _i;}asuint_union;
typedef union {unsigned int _i; float _f;}asfloat_union;
typedef union {double _f; unsigned long long _i;}asuint64_union;
typedef union {unsigned long long _i; double _f;}asdouble_union;
#define asuint(f) ((asuint_union){f})._i
#define asfloat(i) ((asfloat_union){i})._f
#define asuint64(f) ((asuint64_union){f})._i
@ -259,9 +246,9 @@ typedef union {uint64_t _i; double _f;}asdouble_union;
#define EXTRACT_WORDS(hi,lo,d) \
do { \
uint64_t __u = asuint64(d); \
unsigned long long __u = asuint64(d); \
(hi) = __u >> 32; \
(lo) = (uint32_t)__u; \
(lo) = (unsigned int)__u; \
} while (0)
#define GET_HIGH_WORD(hi,d) \
@ -271,16 +258,16 @@ do { \
#define GET_LOW_WORD(lo,d) \
do { \
(lo) = (uint32_t)asuint64(d); \
(lo) = (unsigned int)asuint64(d); \
} while (0)
#define INSERT_WORDS(d,hi,lo) \
do { \
(d) = asdouble(((uint64_t)(hi)<<32) | (uint32_t)(lo)); \
(d) = asdouble(((unsigned long long)(hi)<<32) | (unsigned int)(lo)); \
} while (0)
#define SET_HIGH_WORD(d,hi) \
INSERT_WORDS(d, hi, (uint32_t)asuint64(d))
INSERT_WORDS(d, hi, (unsigned int)asuint64(d))
#define SET_LOW_WORD(d,lo) \
INSERT_WORDS(d, asuint64(d)>>32, lo)
@ -302,15 +289,15 @@ double __cos(double, double);
double __tan(double, double, int);
/* error handling functions */
float __math_xflowf(uint32_t, float);
float __math_uflowf(uint32_t);
float __math_oflowf(uint32_t);
float __math_divzerof(uint32_t);
float __math_xflowf(unsigned int, float);
float __math_uflowf(unsigned int);
float __math_oflowf(unsigned int);
float __math_divzerof(unsigned int);
float __math_invalidf(float);
double __math_xflow(uint32_t, double);
double __math_uflow(uint32_t);
double __math_oflow(uint32_t);
double __math_divzero(uint32_t);
double __math_xflow(unsigned int, double);
double __math_uflow(unsigned int);
double __math_oflow(unsigned int);
double __math_divzero(unsigned int);
double __math_invalid(double);
#if LDBL_MANT_DIG != DBL_MANT_DIG
long double __math_invalidl(long double);

View File

@ -60,7 +60,7 @@ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
double __cos(double x, double y)
{
double_t hz,z,r,w;
double hz,z,r,w;
z = x*x;
w = z*z;

View File

@ -2,7 +2,7 @@
int __fpclassify(double x)
{
union {double f; uint64_t i;} u = {x};
union {double f; unsigned long long i;} u = {x};
int e = u.i>>52 & 0x7ff;
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
if (e==0x7ff) return u.i<<12 ? FP_NAN : FP_INFINITE;

View File

@ -2,7 +2,7 @@
int __fpclassifyf(float x)
{
union {float f; uint32_t i;} u = {x};
union {float f; unsigned int i;} u = {x};
int e = u.i>>23 & 0xff;
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
if (e==0xff) return u.i<<9 ? FP_NAN : FP_INFINITE;

View File

@ -1,6 +1,6 @@
#include "math.h"
double __math_divzero(uint32_t sign)
double __math_divzero(unsigned int sign)
{
return fp_barrier(sign ? -1.0 : 1.0) / 0.0;
}

View File

@ -1,6 +1,6 @@
#include "math.h"
float __math_divzerof(uint32_t sign)
float __math_divzerof(unsigned int sign)
{
return fp_barrierf(sign ? -1.0f : 1.0f) / 0.0f;
}

View File

@ -1,6 +1,6 @@
#include "math.h"
double __math_oflow(uint32_t sign)
double __math_oflow(unsigned int sign)
{
return __math_xflow(sign, 0x1p769);
}

View File

@ -1,6 +1,6 @@
#include "math.h"
float __math_oflowf(uint32_t sign)
float __math_oflowf(unsigned int sign)
{
return __math_xflowf(sign, 0x1p97f);
}

View File

@ -1,6 +1,6 @@
#include "math.h"
double __math_uflow(uint32_t sign)
double __math_uflow(unsigned int sign)
{
return __math_xflow(sign, 0x1p-767);
}

View File

@ -1,6 +1,6 @@
#include "math.h"
float __math_uflowf(uint32_t sign)
float __math_uflowf(unsigned int sign)
{
return __math_xflowf(sign, 0x1p-95f);
}

View File

@ -1,6 +1,6 @@
#include "math.h"
double __math_xflow(uint32_t sign, double y)
double __math_xflow(unsigned int sign, double y)
{
return eval_as_double(fp_barrier(sign ? -y : y) * y);
}

View File

@ -1,6 +1,6 @@
#include "math.h"
float __math_xflowf(uint32_t sign, float y)
float __math_xflowf(unsigned int sign, float y)
{
return eval_as_float(fp_barrierf(sign ? -y : y) * y);
}

View File

@ -48,10 +48,10 @@ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
/* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
int __rem_pio2(double x, double *y)
{
union {double f; uint64_t i;} u = {x};
double_t z,w,t,r,fn;
union {double f; unsigned long long i;} u = {x};
double z,w,t,r,fn;
double tx[3],ty[2];
uint32_t ix;
unsigned int ix;
int sign, n, ex, ey, i;
sign = u.i>>63;
@ -119,8 +119,8 @@ int __rem_pio2(double x, double *y)
if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
medium:
/* rint(x/(pi/2)) */
fn = (double_t)x*invpio2 + toint - toint;
n = (int32_t)fn;
fn = (double)x*invpio2 + toint - toint;
n = (int)fn;
r = x - fn*pio2_1;
w = fn*pio2_1t; /* 1st round, good to 85 bits */
/* Matters with directed rounding. */
@ -167,11 +167,11 @@ medium:
}
/* set z = scalbn(|x|,-ilogb(x)+23) */
u.f = x;
u.i &= (uint64_t)-1>>12;
u.i |= (uint64_t)(0x3ff + 23)<<52;
u.i &= (unsigned long long)-1>>12;
u.i |= (unsigned long long)(0x3ff + 23)<<52;
z = u.f;
for (i=0; i < 2; i++) {
tx[i] = (double)(int32_t)z;
tx[i] = (double)(int)z;
z = (z-tx[i])*0x1p24;
}
tx[i] = z;

View File

@ -138,7 +138,7 @@ static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
* NB: This table must have at least (e0-3)/24 + jk terms.
* For quad precision (e0 <= 16360, jk = 6), this is 686.
*/
static const int32_t ipio2[] = {
static const int ipio2[] = {
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
@ -272,7 +272,7 @@ static const double PIo2[] = {
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
{
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
@ -300,15 +300,15 @@ int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
recompute:
/* distill q[] into iq[] reversingly */
for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
fw = (double)(int32_t)(0x1p-24*z);
iq[i] = (int32_t)(z - 0x1p24*fw);
fw = (double)(int)(0x1p-24*z);
iq[i] = (int)(z - 0x1p24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = scalbn(z,q0); /* actual value of z */
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
n = (int32_t)z;
n = (int)z;
z -= (double)n;
ih = 0;
if (q0 > 0) { /* need iq[jz-1] to determine n */
@ -375,13 +375,13 @@ recompute:
} else { /* break z into 24-bit if necessary */
z = scalbn(z,-q0);
if (z >= 0x1p24) {
fw = (double)(int32_t)(0x1p-24*z);
iq[jz] = (int32_t)(z - 0x1p24*fw);
fw = (double)(int)(0x1p-24*z);
iq[jz] = (int)(z - 0x1p24*fw);
jz += 1;
q0 += 24;
iq[jz] = (int32_t)fw;
iq[jz] = (int)fw;
} else
iq[jz] = (int32_t)z;
iq[jz] = (int)z;
}
/* convert integer "bit" chunk to floating-point value */
@ -411,7 +411,7 @@ recompute:
fw = 0.0;
for (i=jz; i>=0; i--)
fw += fq[i];
// TODO: drop excess precision here once double_t is used
// TODO: drop excess precision here once double is used
fw = (double)fw;
y[0] = ih==0 ? fw : -fw;
fw = fq[0]-fw;

View File

@ -5,7 +5,7 @@ int __signbit(double x)
{
union {
double d;
uint64_t i;
unsigned long long i;
} y = { x };
return y.i>>63;
}

View File

@ -5,7 +5,7 @@ int __signbitf(float x)
{
union {
float f;
uint32_t i;
unsigned int i;
} y = { x };
return y.i>>31;
}

View File

@ -51,7 +51,7 @@ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
double __sin(double x, double y, int iy)
{
double_t z,r,v,w;
double z,r,v,w;
z = x*x;
w = z*z;

View File

@ -65,9 +65,9 @@ pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
double __tan(double x, double y, int odd)
{
double_t z, r, v, w, s, a;
double z, r, v, w, s, a;
double w0, a0;
uint32_t hx;
unsigned int hx;
int big, sign;
GET_HIGH_WORD(hx,x);

View File

@ -51,7 +51,7 @@ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
static double R(double z)
{
double_t p, q;
double p, q;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
return p/q;
@ -60,13 +60,13 @@ static double R(double z)
double acos(double x)
{
double z,w,s,c,df;
uint32_t hx,ix;
unsigned int hx,ix;
GET_HIGH_WORD(hx, x);
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
uint32_t lx;
unsigned int lx;
GET_LOW_WORD(lx,x);
if ((ix-0x3ff00000 | lx) == 0) {

View File

@ -58,7 +58,7 @@ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
static double R(double z)
{
double_t p, q;
double p, q;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
return p/q;
@ -67,13 +67,13 @@ static double R(double z)
double asin(double x)
{
double z,r,s;
uint32_t hx,ix;
unsigned int hx,ix;
GET_HIGH_WORD(hx, x);
ix = hx & 0x7fffffff;
/* |x| >= 1 or nan */
if (ix >= 0x3ff00000) {
uint32_t lx;
unsigned int lx;
GET_LOW_WORD(lx, x);
if ((ix-0x3ff00000 | lx) == 0)
/* asin(1) = +-pi/2 with inexact */

View File

@ -62,8 +62,8 @@ static const double aT[] = {
double atan(double x)
{
double_t w,s1,s2,z;
uint32_t ix,sign;
double w,s1,s2,z;
unsigned int ix,sign;
int id;
GET_HIGH_WORD(ix, x);

View File

@ -46,7 +46,7 @@ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
double atan2(double y, double x)
{
double z;
uint32_t m,lx,ly,ix,iy;
unsigned int m,lx,ly,ix,iy;
if (isnan(x) || isnan(y))
return x+y;

View File

@ -17,7 +17,7 @@
#include <math.h>
static const uint32_t
static const unsigned int
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
@ -31,9 +31,9 @@ P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
double cbrt(double x)
{
union {double f; uint64_t i;} u = {x};
double_t r,s,t,w;
uint32_t hx = u.i>>32 & 0x7fffffff;
union {double f; unsigned long long i;} u = {x};
double r,s,t,w;
unsigned int hx = u.i>>32 & 0x7fffffff;
if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
return x+x;
@ -62,7 +62,7 @@ double cbrt(double x)
} else
hx = hx/3 + B1;
u.i &= 1ULL<<63;
u.i |= (uint64_t)hx << 32;
u.i |= (unsigned long long)hx << 32;
t = u.f;
/*

View File

@ -5,13 +5,13 @@
#elif FLT_EVAL_METHOD==2
#define EPS LDBL_EPSILON
#endif
static const double_t toint = 1/EPS;
static const double toint = 1/EPS;
double ceil(double x)
{
union {double f; uint64_t i;} u = {x};
union {double f; unsigned long long i;} u = {x};
int e = u.i >> 52 & 0x7ff;
double_t y;
double y;
if (e >= 0x3ff+52 || x == 0)
return x;

View File

@ -45,7 +45,7 @@
double cos(double x)
{
double y[2];
uint32_t ix;
unsigned int ix;
unsigned n;
GET_HIGH_WORD(ix, x);

View File

@ -23,12 +23,12 @@
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
a double. (int)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
static inline double specialcase(double tmp, unsigned long long sbits, unsigned long long ki)
{
double_t scale, y;
double scale, y;
if ((ki & 0x80000000) == 0) {
/* k > 0, the exponent of scale might have overflowed by <= 460. */
@ -46,7 +46,7 @@ static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
double hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
@ -62,16 +62,16 @@ static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t top12(double x)
static inline unsigned int top12(double x)
{
return asuint64(x) >> 52;
}
double exp(double x)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
double_t kd, z, r, r2, scale, tail, tmp;
unsigned int abstop;
unsigned long long ki, idx, top, sbits;
double kd, z, r, r2, scale, tail, tmp;
abstop = top12(x) & 0x7ff;
if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
@ -103,7 +103,7 @@ double exp(double x)
/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
kd = eval_as_double(z + Shift);
ki = asuint64(kd) >> 16;
kd = (double_t)(int32_t)ki;
kd = (double)(int)ki;
#else
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
kd = eval_as_double(z + Shift);

View File

@ -19,7 +19,7 @@ extern const struct exp_data {
double poly[4]; /* Last four coefficients. */
double exp2_shift;
double exp2_poly[EXP2_POLY_ORDER];
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
unsigned long long tab[2*(1 << EXP_TABLE_BITS)];
} __exp_data;
#endif

View File

@ -2,7 +2,7 @@
double fabs(double x)
{
union {double f; uint64_t i;} u = {x};
union {double f; unsigned long long i;} u = {x};
u.i &= ULLONG_NSHIFT/2;
return u.f;
}

View File

@ -3,8 +3,8 @@
int factorial(int n)
{
if (n < 0) return (int)__math_invalid(-1.0f);
int32_t r = 1;
for (int32_t i = 2; i <= n; i++)
int r = 1;
for (int i = 2; i <= n; i++)
{
r = r * i;
}

View File

@ -5,13 +5,13 @@
#elif FLT_EVAL_METHOD==2
#define EPS LDBL_EPSILON
#endif
static const double_t toint = 1/EPS;
static const double toint = 1/EPS;
double floor(double x)
{
union {double f; uint64_t i;} u = {x};
union {double f; unsigned long long i;} u = {x};
int e = u.i >> 52 & 0x7ff;
double_t y;
double y;
if (e >= 0x3ff+52 || x == 0)
return x;

View File

@ -2,15 +2,15 @@
double fmod(double x, double y)
{
union {double f; uint64_t i;} ux = {x}, uy = {y};
union {double f; unsigned long long i;} ux = {x}, uy = {y};
int ex = ux.i>>52 & 0x7ff;
int ey = uy.i>>52 & 0x7ff;
int sx = ux.i>>63;
uint64_t i;
unsigned long long i;
/* in the followings uxi should be ux.i, but then gcc wrongly adds */
/* float load/store to inner loops ruining performance and code size */
uint64_t uxi = ux.i;
unsigned long long uxi = ux.i;
if (uy.i<<1 == 0 || isnan(y) || ex == 0x7ff)
return (x*y)/(x*y);
@ -57,11 +57,11 @@ double fmod(double x, double y)
/* scale result */
if (ex > 0) {
uxi -= 1ULL << 52;
uxi |= (uint64_t)ex << 52;
uxi |= (unsigned long long)ex << 52;
} else {
uxi >>= -ex + 1;
}
uxi |= (uint64_t)sx << 63;
uxi |= (unsigned long long)sx << 63;
ux.i = uxi;
return ux.f;
}

View File

@ -6,7 +6,7 @@ int gcd(int a, int b)
if (b < 0) b = -b;
while (b != 0)
{
int32_t t = b;
int t = b;
b = a % b;
a = t;
}

View File

@ -18,16 +18,16 @@
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t top16(double x)
static inline unsigned int top16(double x)
{
return asuint64(x) >> 48;
}
double log(double x)
{
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
uint64_t ix, iz, tmp;
uint32_t top;
double w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
unsigned long long ix, iz, tmp;
unsigned int top;
int k, i;
ix = asuint64(x);
@ -48,8 +48,8 @@ double log(double x)
r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
/* Worst-case error is around 0.507 ULP. */
w = r * 0x1p27;
double_t rhi = r + w - w;
double_t rlo = r - rhi;
double rhi = r + w - w;
double rlo = r - rhi;
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
hi = r + w;
lo = r - hi + w;
@ -76,7 +76,7 @@ double log(double x)
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
k = (int64_t)tmp >> 52; /* arithmetic shift */
k = (long long)tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
@ -91,7 +91,7 @@ double log(double x)
/* rounding error: 0x1p-55/N + 0x1p-66. */
r = (z - T2[i].chi - T2[i].clo) * invc;
#endif
kd = (double_t)k;
kd = (double)k;
/* hi + lo = r + log(c) + k*Ln2. */
w = kd * Ln2hi + logc;

View File

@ -34,9 +34,9 @@ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
double log10(double x)
{
union {double f; uint64_t i;} u = {x};
double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
uint32_t hx;
union {double f; unsigned long long i;} u = {x};
double hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
unsigned int hx;
int k;
hx = u.i>>32;
@ -60,7 +60,7 @@ double log10(double x)
hx += 0x3ff00000 - 0x3fe6a09e;
k += (int)(hx>>20) - 0x3ff;
hx = (hx&0x000fffff) + 0x3fe6a09e;
u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
u.i = (unsigned long long)hx<<32 | (u.i&0xffffffff);
x = u.f;
f = x - 1.0;
@ -76,7 +76,7 @@ double log10(double x)
/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
hi = f - hfsq;
u.f = hi;
u.i &= (uint64_t)-1<<32;
u.i &= (unsigned long long)-1<<32;
hi = u.f;
lo = f - hi - hfsq + s*(hfsq+R);

View File

@ -18,16 +18,16 @@
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t top16(double x)
static inline unsigned int top16(double x)
{
return asuint64(x) >> 48;
}
double log2(double x)
{
double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
uint64_t ix, iz, tmp;
uint32_t top;
double z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
unsigned long long ix, iz, tmp;
unsigned int top;
int k, i;
ix = asuint64(x);
@ -44,7 +44,7 @@ double log2(double x)
hi = r * InvLn2hi;
lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
#else
double_t rhi, rlo;
double rhi, rlo;
rhi = asdouble(asuint64(r) & ULLONG_NSHIFT << 32);
rlo = r - rhi;
hi = rhi * InvLn2hi;
@ -79,12 +79,12 @@ double log2(double x)
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
k = (int64_t)tmp >> 52; /* arithmetic shift */
k = (long long)tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
z = asdouble(iz);
kd = (double_t)k;
kd = (double)k;
/* log2(x) = log2(z/c) + log2(c) + k. */
/* r ~= z/c - 1, |r| < 1/(2*N). */
@ -94,7 +94,7 @@ double log2(double x)
t1 = r * InvLn2hi;
t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
#else
double_t rhi, rlo;
double rhi, rlo;
/* rounding error: 0x1p-55/N + 0x1p-65. */
r = (z - T2[i].chi - T2[i].clo) * invc;
rhi = asdouble(asuint64(r) & ULLONG_NSHIFT << 32);

View File

@ -2,8 +2,8 @@
double modf(double x, double *iptr)
{
union {double f; uint64_t i;} u = {x};
uint64_t mask;
union {double f; unsigned long long i;} u = {x};
unsigned long long mask;
int e = (int)(u.i>>52 & 0x7ff) - 0x3ff;
/* no fractional part */

View File

@ -23,7 +23,7 @@ ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
#define OFF 0x3fe6955500000000
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t top12(double x)
static inline unsigned int top12(double x)
{
return asuint64(x) >> 52;
}
@ -31,11 +31,11 @@ static inline uint32_t top12(double x)
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline double_t log_inline(uint64_t ix, double_t *tail)
static inline double log_inline(unsigned long long ix, double *tail)
{
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
uint64_t iz, tmp;
/* double for better performance on targets with FLT_EVAL_METHOD==2. */
double z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
unsigned long long iz, tmp;
int k, i;
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
@ -43,10 +43,10 @@ static inline double_t log_inline(uint64_t ix, double_t *tail)
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
k = (int64_t)tmp >> 52; /* arithmetic shift */
k = (long long)tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
z = asdouble(iz);
kd = (double_t)k;
kd = (double)k;
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
invc = T[i].invc;
@ -59,10 +59,10 @@ static inline double_t log_inline(uint64_t ix, double_t *tail)
r = __builtin_fma(z, invc, -1.0);
#else
/* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
double_t zhi = asdouble((iz + (1ULL << 31)) & (ULLONG_NSHIFT << 32));
double_t zlo = z - zhi;
double_t rhi = zhi * invc - 1.0;
double_t rlo = zlo * invc;
double zhi = asdouble((iz + (1ULL << 31)) & (ULLONG_NSHIFT << 32));
double zlo = z - zhi;
double rhi = zhi * invc - 1.0;
double rlo = zlo * invc;
r = rhi + rlo;
#endif
@ -73,7 +73,7 @@ static inline double_t log_inline(uint64_t ix, double_t *tail)
lo2 = t1 - t2 + r;
/* Evaluation is optimized assuming superscalar pipelined execution. */
double_t ar, ar2, ar3, lo3, lo4;
double ar, ar2, ar3, lo3, lo4;
ar = A[0] * r; /* A[0] = -0.5. */
ar2 = r * ar;
ar3 = r * ar2;
@ -83,8 +83,8 @@ static inline double_t log_inline(uint64_t ix, double_t *tail)
lo3 = __builtin_fma(ar, r, -ar2);
lo4 = t2 - hi + ar2;
#else
double_t arhi = A[0] * rhi;
double_t arhi2 = rhi * arhi;
double arhi = A[0] * rhi;
double arhi2 = rhi * arhi;
hi = t2 + arhi2;
lo3 = rlo * (ar + arhi);
lo4 = t2 - hi + arhi2;
@ -116,12 +116,12 @@ static inline double_t log_inline(uint64_t ix, double_t *tail)
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
a double. (int)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
static inline double specialcase(double tmp, unsigned long long sbits, unsigned long long ki)
{
double_t scale, y;
double scale, y;
if ((ki & 0x80000000) == 0) {
/* k > 0, the exponent of scale might have overflowed by <= 460. */
@ -140,7 +140,7 @@ static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo, one = 1.0;
double hi, lo, one = 1.0;
if (y < 0.0)
one = -1.0;
lo = scale - y + scale * tmp;
@ -161,12 +161,12 @@ static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias)
static inline double exp_inline(double x, double xtail, unsigned int sign_bias)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, z, r, r2, scale, tail, tmp;
unsigned int abstop;
unsigned long long ki, idx, top, sbits;
/* double for better performance on targets with FLT_EVAL_METHOD==2. */
double kd, z, r, r2, scale, tail, tmp;
abstop = top12(x) & 0x7ff;
if (predict_false(abstop - top12(0x1p-54) >=
@ -174,7 +174,7 @@ static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias)
if (abstop - top12(0x1p-54) >= 0x80000000) {
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
double one = WANT_ROUNDING ? 1.0 + x : 1.0;
return sign_bias ? -one : one;
}
if (abstop >= top12(1024.0)) {
@ -198,7 +198,7 @@ static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias)
/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
kd = eval_as_double(z + Shift);
ki = asuint64(kd) >> 16;
kd = (double_t)(int32_t)ki;
kd = (double)(int)ki;
#else
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
kd = eval_as_double(z + Shift);
@ -230,7 +230,7 @@ static inline double exp_inline(double_t x, double_t xtail, uint32_t sign_bias)
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int checkint(uint64_t iy)
static inline int checkint(unsigned long long iy)
{
int e = iy >> 52 & 0x7ff;
if (e < 0x3ff)
@ -245,16 +245,16 @@ static inline int checkint(uint64_t iy)
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline int zeroinfnan(uint64_t i)
static inline int zeroinfnan(unsigned long long i)
{
return 2 * i - 1 >= 2 * asuint64(INFINITY) - 1;
}
double pow(double x, double y)
{
uint32_t sign_bias = 0;
uint64_t ix, iy;
uint32_t topx, topy;
unsigned int sign_bias = 0;
unsigned long long ix, iy;
unsigned int topx, topy;
ix = asuint64(x);
iy = asuint64(y);
@ -281,7 +281,7 @@ double pow(double x, double y)
return y * y;
}
if (predict_false(zeroinfnan(ix))) {
double_t x2 = x * x;
double x2 = x * x;
if (ix >> 63 && checkint(iy) == 1)
x2 = -x2;
/* Without the barrier some versions of clang hoist the 1/x2 and
@ -323,17 +323,17 @@ double pow(double x, double y)
}
}
double_t lo;
double_t hi = log_inline(ix, &lo);
double_t ehi, elo;
double lo;
double hi = log_inline(ix, &lo);
double ehi, elo;
#if __FP_FAST_FMA
ehi = y * hi;
elo = y * lo + __builtin_fma(y, hi, -ehi);
#else
double_t yhi = asdouble(iy & ULLONG_NSHIFT << 27);
double_t ylo = y - yhi;
double_t lhi = asdouble(asuint64(hi) & ULLONG_NSHIFT << 27);
double_t llo = hi - lhi + lo;
double yhi = asdouble(iy & ULLONG_NSHIFT << 27);
double ylo = y - yhi;
double lhi = asdouble(asuint64(hi) & ULLONG_NSHIFT << 27);
double llo = hi - lhi + lo;
ehi = yhi * lhi;
elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */
#endif

View File

@ -2,8 +2,8 @@
double scalbn(double x, int n)
{
union {double f; uint64_t i;} u;
double_t y = x;
union {double f; unsigned long long i;} u;
double y = x;
if (n > 1023) {
y *= 0x1p1023;
@ -26,7 +26,7 @@ double scalbn(double x, int n)
n = -1022;
}
}
u.i = (uint64_t)(0x3ff+n)<<52;
u.i = (unsigned long long)(0x3ff+n)<<52;
x = y * u.f;
return x;
}

View File

@ -45,7 +45,7 @@
double sin(double x)
{
double y[2];
uint32_t ix;
unsigned int ix;
unsigned n;
/* High word of x. */

View File

@ -4,24 +4,24 @@
#define FENV_SUPPORT 1
/* returns a*b*2^-32 - e, with error 0 <= e < 1. */
static inline uint32_t mul32(uint32_t a, uint32_t b)
static inline unsigned int mul32(unsigned int a, unsigned int b)
{
return (uint64_t)a*b >> 32;
return (unsigned long long)a*b >> 32;
}
/* returns a*b*2^-64 - e, with error 0 <= e < 3. */
static inline uint64_t mul64(uint64_t a, uint64_t b)
static inline unsigned long long mul64(unsigned long long a, unsigned long long b)
{
uint64_t ahi = a>>32;
uint64_t alo = a&0xffffffff;
uint64_t bhi = b>>32;
uint64_t blo = b&0xffffffff;
unsigned long long ahi = a>>32;
unsigned long long alo = a&0xffffffff;
unsigned long long bhi = b>>32;
unsigned long long blo = b&0xffffffff;
return ahi*bhi + (ahi*blo >> 32) + (alo*bhi >> 32);
}
double sqrt(double x)
{
uint64_t ix, top, m;
unsigned long long ix, top, m;
/* special case handling. */
ix = asuint64(x);
@ -103,11 +103,11 @@ double sqrt(double x)
and after switching to 64 bit
m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62 */
static const uint64_t three = 0xc0000000;
uint64_t r, s, d, u, i;
static const unsigned long long three = 0xc0000000;
unsigned long long r, s, d, u, i;
i = (ix >> 46) % 128;
r = (uint32_t)__rsqrt_tab[i] << 16;
r = (unsigned int)__rsqrt_tab[i] << 16;
/* |r sqrt(m) - 1| < 0x1.fdp-9 */
s = mul32(m>>32, r);
/* |s/sqrt(m) - 1| < 0x1.fdp-9 */
@ -134,7 +134,7 @@ double sqrt(double x)
compute nearest rounded result:
the nearest result to 52 bits is either s or s+0x1p-52,
we can decide by comparing (2^52 s + 0.5)^2 to 2^104 m. */
uint64_t d0, d1, d2;
unsigned long long d0, d1, d2;
double y, t;
d0 = (m << 42) - s*s;
d1 = s - d0;
@ -147,7 +147,7 @@ double sqrt(double x)
/* handle rounding modes and inexact exception:
only (s+1)^2 == 2^42 m case is exact otherwise
add a tiny value to cause the fenv effects. */
uint64_t tiny = predict_false(d2==0) ? 0 : 0x0010000000000000;
unsigned long long tiny = predict_false(d2==0) ? 0 : 0x0010000000000000;
tiny |= (d1^d2) & 0x8000000000000000;
t = asdouble(tiny);
y = eval_as_double(y + t);

View File

@ -1,5 +1,5 @@
#include "sqrt_data.h"
const uint16_t __rsqrt_tab[128] = {
const unsigned short __rsqrt_tab[128] = {
0xb451,0xb2f0,0xb196,0xb044,0xaef9,0xadb6,0xac79,0xab43,
0xaa14,0xa8eb,0xa7c8,0xa6aa,0xa592,0xa480,0xa373,0xa26b,
0xa168,0xa06a,0x9f70,0x9e7b,0x9d8a,0x9c9d,0x9bb5,0x9ad1,

View File

@ -7,6 +7,6 @@
if x in [2,4): i = (int)(32*x-64);
__rsqrt_tab[i]*2^-16 is estimating 1/sqrt(x) with small relative error:
|__rsqrt_tab[i]*0x1p-16*sqrt(x) - 1| < -0x1.fdp-9 < 2^-8 */
extern const uint16_t __rsqrt_tab[128];
extern const unsigned short __rsqrt_tab[128];
#endif

View File

@ -44,7 +44,7 @@
double tan(double x)
{
double y[2];
uint32_t ix;
unsigned int ix;
unsigned n;
GET_HIGH_WORD(ix, x);

View File

@ -2,9 +2,9 @@
double trunc(double x)
{
union {double f; uint64_t i;} u = {x};
union {double f; unsigned long long i;} u = {x};
int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff + 12;
uint64_t m;
unsigned long long m;
if (e >= 52 + 12)
return x;