pocketpy/src/modules/array2d.c
ykiko 2773b9993e
Implement dynamic dlib (#309)
* lazy cpp_function and capsule.

* remove retv.

* remove type_map.

* remove object pool from initialize.

* support dynamic library.

* remove vector_bool.

* remove unused header.

* fix export name.

* fix test name.

* some fix

* some fix

* ...

---------

Co-authored-by: blueloveTH <blueloveth@foxmail.com>
2024-09-22 21:48:10 +08:00

573 lines
20 KiB
C

#include "pocketpy/pocketpy.h"
#include "pocketpy/common/utils.h"
#include "pocketpy/objects/object.h"
#include "pocketpy/common/sstream.h"
#include "pocketpy/interpreter/vm.h"
typedef struct c11_array2d {
py_TValue* data; // slots
int n_cols;
int n_rows;
int numel;
} c11_array2d;
typedef struct c11_array2d_iterator {
c11_array2d* array;
int index;
} c11_array2d_iterator;
static bool py_array2d_is_valid(c11_array2d* self, int col, int row) {
return col >= 0 && col < self->n_cols && row >= 0 && row < self->n_rows;
}
static py_ObjectRef py_array2d__get(c11_array2d* self, int col, int row) {
return self->data + row * self->n_cols + col;
}
static void py_array2d__set(c11_array2d* self, int col, int row, py_Ref value) {
self->data[row * self->n_cols + col] = *value;
}
static c11_array2d* py_array2d(py_OutRef out, int n_cols, int n_rows) {
int numel = n_cols * n_rows;
c11_array2d* ud = py_newobject(out, tp_array2d, numel, sizeof(c11_array2d));
ud->data = py_getslot(out, 0);
ud->n_cols = n_cols;
ud->n_rows = n_rows;
ud->numel = numel;
return ud;
}
/* bindings */
static bool array2d__new__(int argc, py_Ref argv) {
// __new__(cls, n_cols: int, n_rows: int, default=None)
py_Ref default_ = py_arg(3);
PY_CHECK_ARG_TYPE(0, tp_type);
PY_CHECK_ARG_TYPE(1, tp_int);
PY_CHECK_ARG_TYPE(2, tp_int);
int n_cols = argv[1]._i64;
int n_rows = argv[2]._i64;
int numel = n_cols * n_rows;
if(n_cols <= 0 || n_rows <= 0) return ValueError("array2d() expected positive dimensions");
c11_array2d* ud = py_array2d(py_pushtmp(), n_cols, n_rows);
// setup initial values
if(py_callable(default_)) {
for(int i = 0; i < numel; i++) {
bool ok = py_call(default_, 0, NULL);
if(!ok) return false;
ud->data[i] = *py_retval();
}
} else {
for(int i = 0; i < numel; i++) {
ud->data[i] = *default_;
}
}
py_assign(py_retval(), py_peek(-1));
py_pop();
return true;
}
static bool array2d_n_cols(int argc, py_Ref argv) {
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
py_newint(py_retval(), self->n_cols);
return true;
}
static bool array2d_n_rows(int argc, py_Ref argv) {
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
py_newint(py_retval(), self->n_rows);
return true;
}
static bool array2d_numel(int argc, py_Ref argv) {
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
py_newint(py_retval(), self->numel);
return true;
}
static bool array2d_is_valid(int argc, py_Ref argv) {
PY_CHECK_ARGC(3);
c11_array2d* self = py_touserdata(argv);
PY_CHECK_ARG_TYPE(1, tp_int);
PY_CHECK_ARG_TYPE(2, tp_int);
int col = py_toint(py_arg(1));
int row = py_toint(py_arg(2));
py_newbool(py_retval(), py_array2d_is_valid(self, col, row));
return true;
}
static bool array2d_get(int argc, py_Ref argv) {
py_Ref default_;
c11_array2d* self = py_touserdata(argv);
PY_CHECK_ARG_TYPE(1, tp_int);
PY_CHECK_ARG_TYPE(2, tp_int);
if(argc == 3) {
default_ = py_None();
} else if(argc == 4) {
default_ = py_arg(3);
} else {
return TypeError("get() expected 3 or 4 arguments");
}
int col = py_toint(py_arg(1));
int row = py_toint(py_arg(2));
if(py_array2d_is_valid(self, col, row)) {
py_assign(py_retval(), py_array2d__get(self, col, row));
} else {
py_assign(py_retval(), default_);
}
return true;
}
static bool array2d_unsafe_get(int argc, py_Ref argv) {
PY_CHECK_ARGC(3);
c11_array2d* self = py_touserdata(argv);
PY_CHECK_ARG_TYPE(1, tp_int);
PY_CHECK_ARG_TYPE(2, tp_int);
int col = py_toint(py_arg(1));
int row = py_toint(py_arg(2));
py_assign(py_retval(), py_array2d__get(self, col, row));
return true;
}
static bool array2d_unsafe_set(int argc, py_Ref argv) {
PY_CHECK_ARGC(4);
c11_array2d* self = py_touserdata(argv);
PY_CHECK_ARG_TYPE(1, tp_int);
PY_CHECK_ARG_TYPE(2, tp_int);
int col = py_toint(py_arg(1));
int row = py_toint(py_arg(2));
py_array2d__set(self, col, row, py_arg(3));
py_newnone(py_retval());
return true;
}
static bool array2d__len__(int argc, py_Ref argv) {
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
py_newint(py_retval(), self->numel);
return true;
}
static bool array2d__eq__(int argc, py_Ref argv) {
PY_CHECK_ARGC(2);
c11_array2d* self = py_touserdata(argv);
if(!py_istype(py_arg(1), tp_array2d)) {
py_newnotimplemented(py_retval());
return true;
}
c11_array2d* other = py_touserdata(py_arg(1));
if(self->n_cols != other->n_cols || self->n_rows != other->n_rows) {
py_newbool(py_retval(), false);
return true;
}
for(int i = 0; i < self->numel; i++) {
int res = py_equal(self->data + i, other->data + i);
if(res == -1) return false;
if(res == 0) {
py_newbool(py_retval(), false);
return true;
}
}
py_newbool(py_retval(), true);
return true;
}
static bool array2d__ne__(int argc, py_Ref argv) {
bool ok = array2d__eq__(argc, argv);
if(!ok) return false;
if(py_isbool(py_retval())) { py_newbool(py_retval(), !py_tobool(py_retval())); }
return true;
}
static bool array2d__repr__(int argc, py_Ref argv) {
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
char buf[256];
snprintf(buf, sizeof(buf), "array2d(%d, %d)", self->n_cols, self->n_rows);
py_newstr(py_retval(), buf);
return true;
}
static bool array2d__iter__(int argc, py_Ref argv) {
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
c11_array2d_iterator* ud =
py_newobject(py_retval(), tp_array2d_iterator, 1, sizeof(c11_array2d_iterator));
py_setslot(py_retval(), 0, argv); // keep the array alive
ud->array = self;
ud->index = 0;
return true;
}
static bool array2d_iterator__next__(int argc, py_Ref argv) {
// def __iter__(self) -> Iterator[tuple[int, int, T]]: ...
PY_CHECK_ARGC(1);
c11_array2d_iterator* self = py_touserdata(argv);
if(self->index < self->array->numel) {
div_t res = div(self->index, self->array->n_cols);
py_newtuple(py_retval(), 3);
py_TValue* data = py_tuple_data(py_retval());
py_newint(&data[0], res.rem);
py_newint(&data[1], res.quot);
py_assign(&data[2], self->array->data + self->index);
self->index++;
return true;
}
return StopIteration();
}
static bool array2d_map(int argc, py_Ref argv) {
// def map(self, f: Callable[[T], Any]) -> 'array2d': ...
PY_CHECK_ARGC(2);
c11_array2d* self = py_touserdata(argv);
py_Ref f = py_arg(1);
c11_array2d* res = py_array2d(py_pushtmp(), self->n_cols, self->n_rows);
for(int i = 0; i < self->numel; i++) {
bool ok = py_call(f, 1, self->data + i);
if(!ok) return false;
res->data[i] = *py_retval();
}
py_assign(py_retval(), py_peek(-1));
py_pop();
return true;
}
static bool array2d_copy(int argc, py_Ref argv) {
// def copy(self) -> 'array2d': ...
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
c11_array2d* res = py_array2d(py_retval(), self->n_cols, self->n_rows);
memcpy(res->data, self->data, self->numel * sizeof(py_TValue));
return true;
}
static bool array2d_fill_(int argc, py_Ref argv) {
// def fill_(self, value: T) -> None: ...
PY_CHECK_ARGC(2);
c11_array2d* self = py_touserdata(argv);
for(int i = 0; i < self->numel; i++)
self->data[i] = argv[1];
py_newnone(py_retval());
return true;
}
static bool array2d_apply_(int argc, py_Ref argv) {
// def apply_(self, f: Callable[[T], T]) -> None: ...
PY_CHECK_ARGC(2);
c11_array2d* self = py_touserdata(argv);
py_Ref f = py_arg(1);
for(int i = 0; i < self->numel; i++) {
bool ok = py_call(f, 1, self->data + i);
if(!ok) return false;
self->data[i] = *py_retval();
}
py_newnone(py_retval());
return true;
}
static bool array2d_copy_(int argc, py_Ref argv) {
// def copy_(self, src: 'array2d') -> None: ...
PY_CHECK_ARGC(2);
c11_array2d* self = py_touserdata(argv);
py_Type src_type = py_typeof(py_arg(1));
if(src_type == tp_array2d) {
c11_array2d* src = py_touserdata(py_arg(1));
if(self->n_cols != src->n_cols || self->n_rows != src->n_rows) {
return ValueError("copy_() expected the same shape: (%d, %d) != (%d, %d)",
self->n_cols,
self->n_rows,
src->n_cols,
src->n_rows);
}
memcpy(self->data, src->data, self->numel * sizeof(py_TValue));
} else {
py_TValue* data;
int length = pk_arrayview(py_arg(1), &data);
if(length != -1) {
if(self->numel != length) {
return ValueError("copy_() expected the same numel: %d != %d", self->numel, length);
}
memcpy(self->data, data, self->numel * sizeof(py_TValue));
} else {
return TypeError("copy_() expected `array2d`, `list` or `tuple`, got '%t", src_type);
}
}
py_newnone(py_retval());
return true;
}
static bool array2d_tolist(int argc, py_Ref argv) {
// def tolist(self) -> list[list[T]]: ...
PY_CHECK_ARGC(1);
c11_array2d* self = py_touserdata(argv);
py_newlistn(py_retval(), self->n_rows);
for(int j = 0; j < self->n_rows; j++) {
py_Ref row_j = py_list_getitem(py_retval(), j);
py_newlistn(row_j, self->n_cols);
for(int i = 0; i < self->n_cols; i++) {
py_list_setitem(row_j, i, py_array2d__get(self, i, j));
}
}
return true;
}
static bool array2d_count(int argc, py_Ref argv) {
// def count(self, value: T) -> int: ...
PY_CHECK_ARGC(2);
c11_array2d* self = py_touserdata(argv);
int count = 0;
for(int i = 0; i < self->numel; i++) {
int res = py_equal(self->data + i, &argv[1]);
if(res == -1) return false;
count += res;
}
py_newint(py_retval(), count);
return true;
}
static bool array2d_find_bounding_rect(int argc, py_Ref argv) {
c11_array2d* self = py_touserdata(argv);
py_Ref value = py_arg(1);
int left = self->n_cols;
int top = self->n_rows;
int right = 0;
int bottom = 0;
for(int j = 0; j < self->n_rows; j++) {
for(int i = 0; i < self->n_cols; i++) {
int res = py_equal(py_array2d__get(self, i, j), value);
if(res == -1) return false;
if(res == 1) {
left = c11__min(left, i);
top = c11__min(top, j);
right = c11__max(right, i);
bottom = c11__max(bottom, j);
}
}
}
int width = right - left + 1;
int height = bottom - top + 1;
if(width <= 0 || height <= 0) {
py_newnone(py_retval());
} else {
py_newtuple(py_retval(), 4);
py_TValue* data = py_tuple_data(py_retval());
py_newint(&data[0], left);
py_newint(&data[1], top);
py_newint(&data[2], width);
py_newint(&data[3], height);
}
return true;
}
static bool array2d_count_neighbors(int argc, py_Ref argv) {
// def count_neighbors(self, value: T, neighborhood: Neighborhood) -> 'array2d[int]': ...
PY_CHECK_ARGC(3);
c11_array2d* self = py_touserdata(argv);
c11_array2d* res = py_array2d(py_pushtmp(), self->n_cols, self->n_rows);
py_Ref value = py_arg(1);
const char* neighborhood = py_tostr(py_arg(2));
#define INC_COUNT(i, j) \
do { \
if(py_array2d_is_valid(self, i, j)) { \
int res = py_equal(py_array2d__get(self, i, j), value); \
if(res == -1) return false; \
count += res; \
} \
} while(0)
if(strcmp(neighborhood, "Moore") == 0) {
for(int j = 0; j < res->n_rows; j++) {
for(int i = 0; i < res->n_cols; i++) {
int count = 0;
INC_COUNT(i - 1, j - 1);
INC_COUNT(i, j - 1);
INC_COUNT(i + 1, j - 1);
INC_COUNT(i - 1, j);
INC_COUNT(i + 1, j);
INC_COUNT(i - 1, j + 1);
INC_COUNT(i, j + 1);
INC_COUNT(i + 1, j + 1);
py_newint(py_array2d__get(res, i, j), count);
}
}
} else if(strcmp(neighborhood, "von Neumann") == 0) {
for(int j = 0; j < res->n_rows; j++) {
for(int i = 0; i < res->n_cols; i++) {
int count = 0;
INC_COUNT(i, j - 1);
INC_COUNT(i - 1, j);
INC_COUNT(i + 1, j);
INC_COUNT(i, j + 1);
py_newint(py_array2d__get(res, i, j), count);
}
}
} else {
return ValueError("neighborhood must be 'Moore' or 'von Neumann'");
}
py_assign(py_retval(), py_peek(-1));
py_pop();
return true;
}
#define HANDLE_SLICE() \
int start_col, stop_col, step_col; \
int start_row, stop_row, step_row; \
if(!pk__parse_int_slice(x, self->n_cols, &start_col, &stop_col, &step_col)) return false; \
if(!pk__parse_int_slice(y, self->n_rows, &start_row, &stop_row, &step_row)) return false; \
if(step_col != 1 || step_row != 1) return ValueError("slice step must be 1"); \
int slice_width = stop_col - start_col; \
int slice_height = stop_row - start_row; \
if(slice_width <= 0 || slice_height <= 0) \
return ValueError("slice width and height must be positive");
static bool array2d__getitem__(int argc, py_Ref argv) {
PY_CHECK_ARGC(2);
PY_CHECK_ARG_TYPE(1, tp_tuple);
if(py_tuple_len(py_arg(1)) != 2) return TypeError("expected a tuple of 2 elements");
py_Ref x = py_tuple_getitem(py_arg(1), 0);
py_Ref y = py_tuple_getitem(py_arg(1), 1);
c11_array2d* self = py_touserdata(argv);
if(py_isint(x) && py_isint(y)) {
int col = py_toint(x);
int row = py_toint(y);
if(py_array2d_is_valid(self, col, row)) {
py_assign(py_retval(), py_array2d__get(self, col, row));
return true;
}
return IndexError("(%d, %d) is not a valid index of array2d(%d, %d)",
col,
row,
self->n_cols,
self->n_rows);
} else if(py_istype(x, tp_slice) && py_istype(y, tp_slice)) {
HANDLE_SLICE();
c11_array2d* res = py_array2d(py_retval(), slice_width, slice_height);
for(int j = start_row; j < stop_row; j++) {
for(int i = start_col; i < stop_col; i++) {
py_array2d__set(res, i - start_col, j - start_row, py_array2d__get(self, i, j));
}
}
return true;
} else {
return TypeError("expected a tuple of 2 ints or slices");
}
}
static bool array2d__setitem__(int argc, py_Ref argv) {
PY_CHECK_ARGC(3);
PY_CHECK_ARG_TYPE(1, tp_tuple);
if(py_tuple_len(py_arg(1)) != 2) return TypeError("expected a tuple of 2 elements");
py_Ref x = py_tuple_getitem(py_arg(1), 0);
py_Ref y = py_tuple_getitem(py_arg(1), 1);
c11_array2d* self = py_touserdata(argv);
py_Ref value = py_arg(2);
if(py_isint(x) && py_isint(y)) {
int col = py_toint(x);
int row = py_toint(y);
if(py_array2d_is_valid(self, col, row)) {
py_array2d__set(self, col, row, value);
py_newnone(py_retval());
return true;
}
return IndexError("(%d, %d) is not a valid index of array2d(%d, %d)",
col,
row,
self->n_cols,
self->n_rows);
} else if(py_istype(x, tp_slice) && py_istype(y, tp_slice)) {
HANDLE_SLICE();
bool is_basic_type = false;
switch(value->type) {
case tp_int:
case tp_float:
case tp_str:
case tp_NoneType:
case tp_bool: is_basic_type = true; break;
default: {
if(!py_istype(value, tp_array2d)) {
return TypeError("expected int/float/str/bool/None or an array2d instance");
}
}
}
if(is_basic_type) {
for(int j = start_row; j < stop_row; j++) {
for(int i = start_col; i < stop_col; i++) {
py_array2d__set(self, i, j, py_arg(2));
}
}
} else {
c11_array2d* src = py_touserdata(value);
if(slice_width != src->n_cols || slice_height != src->n_rows) {
return ValueError("expected the same shape: (%d, %d) != (%d, %d)",
slice_width,
slice_height,
src->n_cols,
src->n_rows);
}
for(int j = 0; j < slice_height; j++) {
for(int i = 0; i < slice_width; i++) {
py_array2d__set(self, i + start_col, j + start_row, py_array2d__get(src, i, j));
}
}
}
py_newnone(py_retval());
return true;
} else {
return TypeError("expected a tuple of 2 ints or slices");
}
}
void pk__add_module_array2d() {
py_GlobalRef mod = py_newmodule("array2d");
py_Type array2d = pk_newtype("array2d", tp_object, mod, NULL, false, true);
py_Type array2d_iterator = pk_newtype("array2d_iterator", tp_object, mod, NULL, false, true);
assert(array2d == tp_array2d);
assert(array2d_iterator == tp_array2d_iterator);
py_setdict(mod, py_name("array2d"), py_tpobject(array2d));
py_bindmagic(array2d_iterator, __iter__, pk_wrapper__self);
py_bindmagic(array2d_iterator, __next__, array2d_iterator__next__);
py_bind(py_tpobject(array2d),
"__new__(cls, n_cols: int, n_rows: int, default=None)",
array2d__new__);
py_bindmagic(array2d, __len__, array2d__len__);
py_bindmagic(array2d, __eq__, array2d__eq__);
py_bindmagic(array2d, __ne__, array2d__ne__);
py_bindmagic(array2d, __repr__, array2d__repr__);
py_bindmagic(array2d, __iter__, array2d__iter__);
py_bindmagic(array2d, __getitem__, array2d__getitem__);
py_bindmagic(array2d, __setitem__, array2d__setitem__);
py_bindproperty(array2d, "n_cols", array2d_n_cols, NULL);
py_bindproperty(array2d, "n_rows", array2d_n_rows, NULL);
py_bindproperty(array2d, "width", array2d_n_cols, NULL);
py_bindproperty(array2d, "height", array2d_n_rows, NULL);
py_bindproperty(array2d, "numel", array2d_numel, NULL);
py_bindmethod(array2d, "is_valid", array2d_is_valid);
py_bindmethod(array2d, "get", array2d_get);
py_bindmethod(array2d, "unsafe_get", array2d_unsafe_get);
py_bindmethod(array2d, "unsafe_set", array2d_unsafe_set);
py_bindmethod(array2d, "map", array2d_map);
py_bindmethod(array2d, "copy", array2d_copy);
py_bindmethod(array2d, "fill_", array2d_fill_);
py_bindmethod(array2d, "apply_", array2d_apply_);
py_bindmethod(array2d, "copy_", array2d_copy_);
py_bindmethod(array2d, "tolist", array2d_tolist);
py_bindmethod(array2d, "count", array2d_count);
py_bindmethod(array2d, "find_bounding_rect", array2d_find_bounding_rect);
py_bindmethod(array2d, "count_neighbors", array2d_count_neighbors);
}