6.7 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	| icon | title | order | 
|---|---|---|
| cpu | Write C++ Bindings | 17 | 
Quick Start
pkpy provides a pybind11 compatible layer which allows users to do convenient bindings.
To begin with, use py::scoped_interpreter guard{} to start the interpreter before using any Python objects.
Or explicitly call py::interpreter::initialize() and py::interpreter::finalize().
module
#include <pybind11/pybind11.h>
namespace py = pybind11;
PYBIND11_EMBEDDED_MODULE(example, m) {
    m.def("add", [](int a, int b) {
        return a + b;
    });
    auto math = m.def_submodule("math");
}
function
int add(int a, int b) { return a + b; }
int add(int a, int b, int c) { return a + b + c; }
void register_function(py::module_& m)
{
    m.def("add", py::overload_cast<int, int>(&add));
    // support function overload
    m.def("add", py::overload_cast<int, int, int>(&add));
    // bind with default arguments
    m.def("sub", [](int a, int b) { 
        return a - b; 
    }, py::arg("a") = 1, py::arg("b") = 2);
    // bind *args
    m.def("add", [](py::args args) {
        int sum = 0;
        for (auto& arg : args) {
            sum += arg.cast<int>();
        }
        return sum;
    });
    // bind **kwargs
    m.def("add", [](py::kwargs kwargs) {
        int sum = 0;
        for (auto item : kwargs) {
            sum += item.second.cast<int>();
        }
        return sum;
    });
}
class
struct Point
{
    const int x;
    int y;
public:
    Point() : x(0), y(0) {}
    Point(int x, int y) : x(x), y(y) {}
    Point(const Point& p) : x(p.x), y(p.y) {}
    std::string stringfy() const { 
        return "(" + std::to_string(x) + ", " + std::to_string(y) + ")"; 
    }
};
struct Point3D : Point
{
private:
    int z;
public:
    Point3D(int x, int y, int z) : Point(x, y), z(z) {}
    int get_z() const { return z; }
    void set_z(int z) { this->z = z; }
};
void bind_class(py::module_& m)
{
    py::class_<Point>(m, "Point")
        .def(py::init<>())
        .def(py::init<int, int>())
        .def(py::init<const Point&>())
        .def_readonly("x", &Point::x)
        .def_readwrite("y", &Point::y)
        .def("__str__", &Point::stringfy);
    // only support single inheritance
    py::class_<Point3D, Point>(m, "Point3D", py::dynamic_attr())
        .def(py::init<int, int, int>())
        .def_property("z", &Point3D::get_z, &Point3D::set_z);
    // dynamic_attr will enable the dict of bound class
}
operators
#include <pybind11/operators.h>
namespace py = pybind11;
struct Int {
    int value;
    Int(int value) : value(value) {}
    Int operator+(const Int& other) const {
        return Int(value + other.value);
    }
    Int operator-(const Int& other) const {
        return Int(value - other.value);
    }
    bool operator==(const Int& other) const {
        return value == other.value;
    }
    bool operator!=(const Int& other) const {
        return value != other.value;
    }
};
void bind_operators(py::module_& m)
{
    py::class_<Int>(m, "Int")
        .def(py::init<int>())
        .def(py::self + py::self)
        .def(py::self - py::self)
        .def(py::self == py::self)
        .def(py::self != py::self);
        // other operators are similar
}
py::object
py::object is just simple wrapper around PyVar. It supports some convenient methods to interact with Python objects.
here are some common methods:
obj.attr("x"); // access attribute
obj[1]; // access item
obj.is_none(); // same as obj is None in Python
obj.is(obj2); // same as obj is obj2 in Python
// operators
obj + obj2; // same as obj + obj2 in Python
// ...
obj == obj2; // same as obj == obj2 in Python
// ...
obj(...); // same as obj.__call__(...)
py::cast(obj); // cast to Python object
obj.cast<T>; // cast to C++ type
py::type::of(obj); // get type of obj
py::type::of<T>(); // get type of T, if T is registered
you can also create some builtin objects with their according wrappers:
py::bool_ b = {true};
py::int_ i = {1};
py::float_ f = {1.0};
py::str s = {"hello"};
py::list l = {1, 2, 3};
py::tuple t = {1, 2, 3};
// ...
More Examples
More examples please see the test folder in the GSoC repository. All tested features are supported.
Limits and Comparison
This is a feature list of pybind11 for pocketpy. It lists all completed and pending features. It also lists the features that cannot be implemented in the current version of pocketpy.
Function
- Function overloading
- Return value policy
- is_prepend
- *argsand- **kwargs
- Keep-alive
- Call Guard
- Default arguments
- Keyword-Only arguments
- Positional-Only arguments
- Allow/Prohibiting None arguments
Class
- Creating bindings for a custom type
- Binding lambda functions
- Dynamic attributes
- Inheritance and automatic downcasting
- Enumerations and internal types
- Instance and static fields
Binding static fields may never be implemented in pocketpy because it requires a metaclass, which is a heavy and infrequently used feature.
Exceptions
Need further discussion.
Smart pointers
- std::shared_ptr
- std::unique_ptr
- Custom smart pointers
Type conversions
- Python built-in types
- STL Containers
- Functional
- Chrono
Python C++ interface
Need further discussion.
- object
- none
- type
- bool_
- int_
- float_
- str
- bytes
- bytearray
- tuple
- list
- set
- dict
- slice
- iterable
- iterator
- function
- buffer
- memoryview
- capsule
Miscellaneous
- Global Interpreter Lock (GIL)
- Binding sequence data types, iterators, the slicing protocol, etc.
- Convenient operators binding
Differences between CPython and pocketpy
- 
only add,subandmulhave corresponding right versions in pocketpy. So if you bindint() >> py::self, it will has no effect in pocketpy.
- 
__new__and__del__are not supported in pocketpy.
- 
in-place operators, such as +=,-=,*=, etc., are not supported in pocketpy.
- 
the return value of globalsis immutable in pocketpy.