mirror of
				https://github.com/pocketpy/pocketpy
				synced 2025-10-31 17:00:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			137 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| icon: package
 | |
| label: math
 | |
| ---
 | |
| 
 | |
| ### `math.pi`
 | |
| 
 | |
| 3.141592653589793
 | |
| 
 | |
| ### `math.e`
 | |
| 
 | |
| 2.718281828459045
 | |
| 
 | |
| ### `math.inf`
 | |
| 
 | |
| The `inf`.
 | |
| 
 | |
| ### `math.nan`
 | |
| 
 | |
| The `nan`.
 | |
| 
 | |
| ### `math.ceil(x)`
 | |
| 
 | |
| Return the ceiling of `x` as a float, the smallest integer value greater than or equal to `x`.
 | |
| 
 | |
| ### `math.fabs(x)`
 | |
| 
 | |
| Return the absolute value of `x`.
 | |
| 
 | |
| ### `math.floor(x)`
 | |
| 
 | |
| Return the floor of `x` as a float, the largest integer value less than or equal to `x`.
 | |
| 
 | |
| ### `math.fsum(iterable)`
 | |
| 
 | |
| Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple intermediate partial sums:
 | |
| 
 | |
| ```
 | |
| >>> sum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
 | |
| 0.9999999999999999
 | |
| >>> fsum([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
 | |
| 1.0
 | |
| ```
 | |
| 
 | |
| ### `math.gcd(a, b)`
 | |
| 
 | |
| Return the greatest common divisor of the integers `a` and `b`.
 | |
| 
 | |
| 
 | |
| ### `math.isfinite(x)`
 | |
| 
 | |
| Return `True` if `x` is neither an infinity nor a NaN, and `False` otherwise.
 | |
| 
 | |
| ### `math.isinf(x)`
 | |
| 
 | |
| Return `True` if `x` is a positive or negative infinity, and `False` otherwise.
 | |
| 
 | |
| ### `math.isnan(x)`
 | |
| 
 | |
| Return `True` if `x` is a NaN (not a number), and `False` otherwise.
 | |
| 
 | |
| ### `math.isclose(a, b)`
 | |
| 
 | |
| Return `True` if the values `a` and `b` are close to each other and `False` otherwise.
 | |
| 
 | |
| ### `math.exp(x)`
 | |
| 
 | |
| Return `e` raised to the power of `x`.
 | |
| 
 | |
| ### `math.log(x)`
 | |
| 
 | |
| Return the natural logarithm of `x` (to base `e`).
 | |
| 
 | |
| ### `math.log2(x)`
 | |
| 
 | |
| Return the base-2 logarithm of `x`. This is usually more accurate than `log(x, 2)`.
 | |
| 
 | |
| ### `math.log10(x)`
 | |
| 
 | |
| Return the base-10 logarithm of `x`. This is usually more accurate than `log(x, 10)`.
 | |
| 
 | |
| ### `math.pow(x, y)`
 | |
| 
 | |
| Return `x` raised to the power `y`.
 | |
| 
 | |
| ### `math.sqrt(x)`
 | |
| 
 | |
| Return the square root of `x`.
 | |
| 
 | |
| ### `math.acos(x)`
 | |
| 
 | |
| Return the arc cosine of `x`, in radians.
 | |
| 
 | |
| ### `math.asin(x)`
 | |
| 
 | |
| Return the arc sine of `x`, in radians.
 | |
| 
 | |
| ### `math.atan(x)`
 | |
| 
 | |
| Return the arc tangent of `x`, in radians.
 | |
| 
 | |
| ### `math.atan2(y, x)`
 | |
| 
 | |
| Return `atan(y / x)`, in radians. The result is between `-pi` and `pi`. The vector in the plane from the origin to point `(x, y)` makes this angle with the positive X axis. The point of `atan2()` is that the signs of both inputs are known to it, so it can compute the correct quadrant for the angle. For example, `atan(1)` and `atan2(1, 1)` are both `pi/4`, but `atan2(-1, -1)` is `-3*pi/4`.
 | |
| 
 | |
| ### `math.cos(x)`
 | |
| 
 | |
| Return the cosine of `x` radians.
 | |
| 
 | |
| ### `math.sin(x)`
 | |
| 
 | |
| Return the sine of `x` radians.
 | |
| 
 | |
| ### `math.tan(x)`
 | |
| 
 | |
| Return the tangent of `x` radians.
 | |
| 
 | |
| ### `math.degrees(x)`
 | |
| 
 | |
| Convert angle `x` from radians to degrees.
 | |
| 
 | |
| ### `math.radians(x)`
 | |
| 
 | |
| Convert angle `x` from degrees to radians.
 | |
| 
 | |
| ### `math.modf(x)`
 | |
| 
 | |
| Return the fractional and integer parts of `x`. Both results carry the sign of `x` and are floats.
 | |
| 
 | |
| ### `math.copysign(x, y)`
 | |
| 
 | |
| Return a float with the magnitude (absolute value) of `x` but the sign of `y`.
 | |
| 
 | |
| ### `math.factorial(x)`
 | |
| 
 | |
| Return `x` factorial as an integer.
 |