pocketpy/docs/bindings.md
2024-05-08 14:50:41 +08:00

306 lines
8.7 KiB
Markdown

---
icon: cpu
title: Write Bindings
order: 18
---
In order to use a C/C++ library in python, you need to write bindings for it.
pkpy uses an universal signature to wrap a function pointer as a python function or method that can be called in python code, i.e `NativeFuncC`.
```cpp
typedef PyObject* (*NativeFuncC)(VM*, ArgsView);
```
+ The first argument is the pointer of `VM` instance.
+ The second argument is an array-like object indicates the arguments list. You can use `[]` operator to get the element and call `size()` to get the length of the array.
+ The return value is a `PyObject*`, which should not be `nullptr`. If there is no return value, return `vm->None`.
## Bind a function or method
Use `vm->bind` to bind a function or method.
+ `PyObject* bind(PyObject*, const char* sig, NativeFuncC)`
+ `PyObject* bind(PyObject*, const char* sig, const char* docstring, NativeFuncC)`
```cpp
vm->bind(obj, "add(a: int, b: int) -> int", [](VM* vm, ArgsView args){
int a = py_cast<int>(vm, args[0]);
int b = py_cast<int>(vm, args[1]);
return py_var(vm, a + b);
});
// or you can provide a docstring
vm->bind(obj,
"add(a: int, b: int) -> int",
"add two integers", [](VM* vm, ArgsView args){
int a = py_cast<int>(vm, args[0]);
int b = py_cast<int>(vm, args[1]);
return py_var(vm, a + b);
});
```
### How to capture something
By default, the lambda being bound is a C function pointer,
you cannot capture anything! The following example does not compile.
```cpp
int x = 1;
vm->bind(obj, "f() -> int", [x](VM* vm, ArgsView args){
// error: cannot capture 'x'
return py_var(vm, x);
});
```
I do not encourage you to capture something in a lambda being bound
because:
1. Captured lambda runs slower and causes "code-bloat".
2. Captured values are unsafe, especially for `PyObject*` as they could leak by accident.
However, there are 3 ways to capture something when you really need to.
The most safe and elegant way is to subclass `VM` and add a member variable.
```cpp
class YourVM : public VM{
public:
int x;
YourVM() : VM() {}
};
int main(){
YourVM* vm = new YourVM();
vm->x = 1;
vm->bind(obj, "f() -> int", [](VM* _vm, ArgsView args){
// do a static_cast and you can get any extra members of YourVM
YourVM* vm = static_cast<YourVM*>(_vm);
return py_var(vm, vm->x);
});
return 0;
}
```
The 2nd way is to use `vm->bind`'s last parameter `userdata`, you can store an `pkpy::any` object.
And use `lambda_get_userdata<T>(args.begin())` to get it inside the lambda body.
```cpp
int x = 1;
vm->bind(obj, "f() -> int", [](VM* vm, ArgsView args){
// get the userdata
int x = lambda_get_userdata<int>(args.begin());
return py_var(vm, x);
}, x); // capture x
```
The 3rd way is to change the macro `PK_ENABLE_STD_FUNCTION` in `config.h`:
```cpp
#define PK_ENABLE_STD_FUNCTION 0 // => 1
```
Then you can use standard capture list in lambda.
## Bind a class or struct
Assume you have a struct `Point` declared as follows.
```cpp
struct Point{
int x;
int y;
}
```
You can create a `test` module and use `vm->register_user_class<>` to bind the class to the test module.
```cpp
int main(){
VM* vm = new VM();
PyObject* mod = vm->new_module("test");
vm->register_user_class<Point>(mod, "Point",
[](VM* vm, PyObject* mod, PyObject* type){
// wrap field x
vm->bind_field(type, "x", &Point::x);
// wrap field y
vm->bind_field(type, "y", &Point::y);
// __init__ method
vm->bind(type, "__init__(self, x, y)", [](VM* vm, ArgsView args){
Point& self = _py_cast<Point&>(vm, args[0]);
self.x = py_cast<int>(vm, args[1]);
self.y = py_cast<int>(vm, args[2]);
return vm->None;
});
});
// use the Point class
vm->exec("import test");
vm->exec("a = test.Point(1, 2)");
vm->exec("print(a.x)"); // 1
vm->exec("print(a.y)"); // 2
delete vm;
return 0;
}
```
### Handle gc for container types
If your custom type stores `PyObject*` in its fields, you need to handle gc for them.
```cpp
struct Container{
PyObject* a;
std::vector<PyObject*> b;
// ...
}
```
Add a magic method `_gc_mark() const` to your custom type.
```cpp
struct Container{
PyObject* a;
std::vector<PyObject*> b;
// ...
void _gc_mark() const{
// mark a
if(a) PK_OBJ_MARK(a);
// mark elements in b
for(PyObject* obj : b){
if(obj) PK_OBJ_MARK(obj);
}
}
}
```
For global objects, use the callback in `vm->heap`.
```cpp
void (*_gc_marker_ex)(VM*) = nullptr;
```
It will be invoked before a GC starts. So you can mark objects inside the callback to keep them alive.
## Others
For some magic methods, we provide specialized binding function.
They do not take universal function pointer as argument.
You need to provide the detailed `Type` object and the corresponding function pointer.
```cpp
PyObject* f_add(VM* vm, PyObject* lhs, PyObject* rhs){
int a = py_cast<int>(vm, lhs);
int b = py_cast<int>(vm, rhs);
return py_var(vm, a + b);
}
vm->bind__add__(vm->tp_int, f_add);
```
This specialized binding function has optimizations and result in better performance when calling from python code.
For example, `vm->bind__add__` is preferred over `vm->bind_func(type, "__add__", 2, f_add)`.
## Further reading
See [random.cpp](https://github.com/pocketpy/pocketpy/blob/main/src/random.cpp) for an example used by `random` module.
See [collections.cpp](https://github.com/pocketpy/pocketpy/blob/main/src/collections.cpp) for a modern implementation of `collections.deque`.
## Reuse Lua bindings
pkpy provides a lua bridge to reuse lua bindings.
It allows you to run lua code and call lua functions in python
by embedding a lua virtual machine.
Add `lua_bridge.hpp` and `lua_bridge.cpp` in [3rd/lua_bridge](https://github.com/pocketpy/pocketpy/tree/main/3rd/lua_bridge) to your project.
Make sure `lua.h`, `lualib.h` and `lauxlib.h` are in your include path
because `lua_bridge.hpp` needs them.
The lua bridge is based on lua 5.1.5 for maximum compatibility.
lua 5.2 or higher should also work.
### Setup
Use `initialize_lua_bridge(VM*, lua_State*)` to initialize the lua bridge.
This creates a new module `lua` in your python virtual machine.
You can use `lua.dostring` to execute lua code and get the result.
And use `lua.Table()` to create a lua table.
A `lua.Table` instance in python is a dict-like object which provides a bunch of
magic methods to access the underlying lua table.
```python
class Table:
def keys(self) -> list:
"""Return a list of keys in the table."""
def values(self) -> list:
"""Return a list of values in the table."""
def items(self) -> list[tuple]:
"""Return a list of (key, value) pairs in the table."""
def __len__(self) -> int:
"""Return the length of the table."""
def __contains__(self, key) -> bool:
"""Return True if the table contains the key."""
def __getitem__(self, key): ...
def __setitem__(self, key, value): ...
def __delitem__(self, key): ...
def __getattr__(self, key): ...
def __setattr__(self, key, value): ...
def __delattr__(self, key): ...
```
Only basic types can be passed between python and lua.
The following table shows the type mapping.
If you pass an unsupported type, an exception will be raised.
| Python type | Lua type | Allow create in Python? | Reference? |
| ----------- | -------- | ---------------------- | --------- |
| `None` | `nil` | YES | NO |
| `bool` | `boolean` | YES | NO |
| `int` | `number` | YES | NO |
| `float` | `number` | YES | NO |
| `str` | `string` | YES | NO |
| `tuple` | `table` | YES | NO |
| `list` | `table` | YES | NO |
| `dict` | `table` | YES | NO |
| `lua.Table` | `table` | YES | YES |
| `lua.Function`| `function`| NO | YES |
### Example
```cpp
#include "lua_bridge.hpp"
using namespace pkpy;
int main(){
VM* vm = new VM();
// create lua state
lua_State* L = luaL_newstate();
luaL_openlibs(L);
// initialize lua bridge
initialize_lua_bridge(vm, L);
// dostring to get _G
vm->exec("import lua");
vm->exec("g = lua.dostring('return _G')");
// create a table
vm->exec("t = lua.Table()");
vm->exec("t.a = 1");
vm->exec("t.b = 2");
// call lua function
vm->exec("g.print(t.a + t.b)"); // 3
return 0;
}
```