mirror of
https://github.com/pocketpy/pocketpy
synced 2025-10-22 20:40:18 +00:00
345 lines
8.7 KiB
C++
345 lines
8.7 KiB
C++
// MIT License
|
|
|
|
// Copyright (c) 2019 Erin Catto
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
#include "box2d/b2_body.h"
|
|
#include "box2d/b2_time_step.h"
|
|
#include "box2d/b2_weld_joint.h"
|
|
|
|
// Point-to-point constraint
|
|
// C = p2 - p1
|
|
// Cdot = v2 - v1
|
|
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
|
|
// J = [-I -r1_skew I r2_skew ]
|
|
// Identity used:
|
|
// w k % (rx i + ry j) = w * (-ry i + rx j)
|
|
|
|
// Angle constraint
|
|
// C = angle2 - angle1 - referenceAngle
|
|
// Cdot = w2 - w1
|
|
// J = [0 0 -1 0 0 1]
|
|
// K = invI1 + invI2
|
|
|
|
void b2WeldJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor)
|
|
{
|
|
bodyA = bA;
|
|
bodyB = bB;
|
|
localAnchorA = bodyA->GetLocalPoint(anchor);
|
|
localAnchorB = bodyB->GetLocalPoint(anchor);
|
|
referenceAngle = bodyB->GetAngle() - bodyA->GetAngle();
|
|
}
|
|
|
|
b2WeldJoint::b2WeldJoint(const b2WeldJointDef* def)
|
|
: b2Joint(def)
|
|
{
|
|
m_localAnchorA = def->localAnchorA;
|
|
m_localAnchorB = def->localAnchorB;
|
|
m_referenceAngle = def->referenceAngle;
|
|
m_stiffness = def->stiffness;
|
|
m_damping = def->damping;
|
|
|
|
m_impulse.SetZero();
|
|
}
|
|
|
|
void b2WeldJoint::InitVelocityConstraints(const b2SolverData& data)
|
|
{
|
|
m_indexA = m_bodyA->m_islandIndex;
|
|
m_indexB = m_bodyB->m_islandIndex;
|
|
m_localCenterA = m_bodyA->m_sweep.localCenter;
|
|
m_localCenterB = m_bodyB->m_sweep.localCenter;
|
|
m_invMassA = m_bodyA->m_invMass;
|
|
m_invMassB = m_bodyB->m_invMass;
|
|
m_invIA = m_bodyA->m_invI;
|
|
m_invIB = m_bodyB->m_invI;
|
|
|
|
float aA = data.positions[m_indexA].a;
|
|
b2Vec2 vA = data.velocities[m_indexA].v;
|
|
float wA = data.velocities[m_indexA].w;
|
|
|
|
float aB = data.positions[m_indexB].a;
|
|
b2Vec2 vB = data.velocities[m_indexB].v;
|
|
float wB = data.velocities[m_indexB].w;
|
|
|
|
b2Rot qA(aA), qB(aB);
|
|
|
|
m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
|
|
m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
|
|
|
|
// J = [-I -r1_skew I r2_skew]
|
|
// [ 0 -1 0 1]
|
|
// r_skew = [-ry; rx]
|
|
|
|
// Matlab
|
|
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
|
|
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
|
|
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
|
|
|
|
float mA = m_invMassA, mB = m_invMassB;
|
|
float iA = m_invIA, iB = m_invIB;
|
|
|
|
b2Mat33 K;
|
|
K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
|
|
K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
|
|
K.ez.x = -m_rA.y * iA - m_rB.y * iB;
|
|
K.ex.y = K.ey.x;
|
|
K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
|
|
K.ez.y = m_rA.x * iA + m_rB.x * iB;
|
|
K.ex.z = K.ez.x;
|
|
K.ey.z = K.ez.y;
|
|
K.ez.z = iA + iB;
|
|
|
|
if (m_stiffness > 0.0f)
|
|
{
|
|
K.GetInverse22(&m_mass);
|
|
|
|
float invM = iA + iB;
|
|
|
|
float C = aB - aA - m_referenceAngle;
|
|
|
|
// Damping coefficient
|
|
float d = m_damping;
|
|
|
|
// Spring stiffness
|
|
float k = m_stiffness;
|
|
|
|
// magic formulas
|
|
float h = data.step.dt;
|
|
m_gamma = h * (d + h * k);
|
|
m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
|
|
m_bias = C * h * k * m_gamma;
|
|
|
|
invM += m_gamma;
|
|
m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f;
|
|
}
|
|
else if (K.ez.z == 0.0f)
|
|
{
|
|
K.GetInverse22(&m_mass);
|
|
m_gamma = 0.0f;
|
|
m_bias = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
K.GetSymInverse33(&m_mass);
|
|
m_gamma = 0.0f;
|
|
m_bias = 0.0f;
|
|
}
|
|
|
|
if (data.step.warmStarting)
|
|
{
|
|
// Scale impulses to support a variable time step.
|
|
m_impulse *= data.step.dtRatio;
|
|
|
|
b2Vec2 P(m_impulse.x, m_impulse.y);
|
|
|
|
vA -= mA * P;
|
|
wA -= iA * (b2Cross(m_rA, P) + m_impulse.z);
|
|
|
|
vB += mB * P;
|
|
wB += iB * (b2Cross(m_rB, P) + m_impulse.z);
|
|
}
|
|
else
|
|
{
|
|
m_impulse.SetZero();
|
|
}
|
|
|
|
data.velocities[m_indexA].v = vA;
|
|
data.velocities[m_indexA].w = wA;
|
|
data.velocities[m_indexB].v = vB;
|
|
data.velocities[m_indexB].w = wB;
|
|
}
|
|
|
|
void b2WeldJoint::SolveVelocityConstraints(const b2SolverData& data)
|
|
{
|
|
b2Vec2 vA = data.velocities[m_indexA].v;
|
|
float wA = data.velocities[m_indexA].w;
|
|
b2Vec2 vB = data.velocities[m_indexB].v;
|
|
float wB = data.velocities[m_indexB].w;
|
|
|
|
float mA = m_invMassA, mB = m_invMassB;
|
|
float iA = m_invIA, iB = m_invIB;
|
|
|
|
if (m_stiffness > 0.0f)
|
|
{
|
|
float Cdot2 = wB - wA;
|
|
|
|
float impulse2 = -m_mass.ez.z * (Cdot2 + m_bias + m_gamma * m_impulse.z);
|
|
m_impulse.z += impulse2;
|
|
|
|
wA -= iA * impulse2;
|
|
wB += iB * impulse2;
|
|
|
|
b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
|
|
|
|
b2Vec2 impulse1 = -b2Mul22(m_mass, Cdot1);
|
|
m_impulse.x += impulse1.x;
|
|
m_impulse.y += impulse1.y;
|
|
|
|
b2Vec2 P = impulse1;
|
|
|
|
vA -= mA * P;
|
|
wA -= iA * b2Cross(m_rA, P);
|
|
|
|
vB += mB * P;
|
|
wB += iB * b2Cross(m_rB, P);
|
|
}
|
|
else
|
|
{
|
|
b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA);
|
|
float Cdot2 = wB - wA;
|
|
b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2);
|
|
|
|
b2Vec3 impulse = -b2Mul(m_mass, Cdot);
|
|
m_impulse += impulse;
|
|
|
|
b2Vec2 P(impulse.x, impulse.y);
|
|
|
|
vA -= mA * P;
|
|
wA -= iA * (b2Cross(m_rA, P) + impulse.z);
|
|
|
|
vB += mB * P;
|
|
wB += iB * (b2Cross(m_rB, P) + impulse.z);
|
|
}
|
|
|
|
data.velocities[m_indexA].v = vA;
|
|
data.velocities[m_indexA].w = wA;
|
|
data.velocities[m_indexB].v = vB;
|
|
data.velocities[m_indexB].w = wB;
|
|
}
|
|
|
|
bool b2WeldJoint::SolvePositionConstraints(const b2SolverData& data)
|
|
{
|
|
b2Vec2 cA = data.positions[m_indexA].c;
|
|
float aA = data.positions[m_indexA].a;
|
|
b2Vec2 cB = data.positions[m_indexB].c;
|
|
float aB = data.positions[m_indexB].a;
|
|
|
|
b2Rot qA(aA), qB(aB);
|
|
|
|
float mA = m_invMassA, mB = m_invMassB;
|
|
float iA = m_invIA, iB = m_invIB;
|
|
|
|
b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
|
|
b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
|
|
|
|
float positionError, angularError;
|
|
|
|
b2Mat33 K;
|
|
K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
|
|
K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
|
|
K.ez.x = -rA.y * iA - rB.y * iB;
|
|
K.ex.y = K.ey.x;
|
|
K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
|
|
K.ez.y = rA.x * iA + rB.x * iB;
|
|
K.ex.z = K.ez.x;
|
|
K.ey.z = K.ez.y;
|
|
K.ez.z = iA + iB;
|
|
|
|
if (m_stiffness > 0.0f)
|
|
{
|
|
b2Vec2 C1 = cB + rB - cA - rA;
|
|
|
|
positionError = C1.Length();
|
|
angularError = 0.0f;
|
|
|
|
b2Vec2 P = -K.Solve22(C1);
|
|
|
|
cA -= mA * P;
|
|
aA -= iA * b2Cross(rA, P);
|
|
|
|
cB += mB * P;
|
|
aB += iB * b2Cross(rB, P);
|
|
}
|
|
else
|
|
{
|
|
b2Vec2 C1 = cB + rB - cA - rA;
|
|
float C2 = aB - aA - m_referenceAngle;
|
|
|
|
positionError = C1.Length();
|
|
angularError = b2Abs(C2);
|
|
|
|
b2Vec3 C(C1.x, C1.y, C2);
|
|
|
|
b2Vec3 impulse;
|
|
if (K.ez.z > 0.0f)
|
|
{
|
|
impulse = -K.Solve33(C);
|
|
}
|
|
else
|
|
{
|
|
b2Vec2 impulse2 = -K.Solve22(C1);
|
|
impulse.Set(impulse2.x, impulse2.y, 0.0f);
|
|
}
|
|
|
|
b2Vec2 P(impulse.x, impulse.y);
|
|
|
|
cA -= mA * P;
|
|
aA -= iA * (b2Cross(rA, P) + impulse.z);
|
|
|
|
cB += mB * P;
|
|
aB += iB * (b2Cross(rB, P) + impulse.z);
|
|
}
|
|
|
|
data.positions[m_indexA].c = cA;
|
|
data.positions[m_indexA].a = aA;
|
|
data.positions[m_indexB].c = cB;
|
|
data.positions[m_indexB].a = aB;
|
|
|
|
return positionError <= b2_linearSlop && angularError <= b2_angularSlop;
|
|
}
|
|
|
|
b2Vec2 b2WeldJoint::GetAnchorA() const
|
|
{
|
|
return m_bodyA->GetWorldPoint(m_localAnchorA);
|
|
}
|
|
|
|
b2Vec2 b2WeldJoint::GetAnchorB() const
|
|
{
|
|
return m_bodyB->GetWorldPoint(m_localAnchorB);
|
|
}
|
|
|
|
b2Vec2 b2WeldJoint::GetReactionForce(float inv_dt) const
|
|
{
|
|
b2Vec2 P(m_impulse.x, m_impulse.y);
|
|
return inv_dt * P;
|
|
}
|
|
|
|
float b2WeldJoint::GetReactionTorque(float inv_dt) const
|
|
{
|
|
return inv_dt * m_impulse.z;
|
|
}
|
|
|
|
void b2WeldJoint::Dump()
|
|
{
|
|
int32 indexA = m_bodyA->m_islandIndex;
|
|
int32 indexB = m_bodyB->m_islandIndex;
|
|
|
|
b2Dump(" b2WeldJointDef jd;\n");
|
|
b2Dump(" jd.bodyA = bodies[%d];\n", indexA);
|
|
b2Dump(" jd.bodyB = bodies[%d];\n", indexB);
|
|
b2Dump(" jd.collideConnected = bool(%d);\n", m_collideConnected);
|
|
b2Dump(" jd.localAnchorA.Set(%.9g, %.9g);\n", m_localAnchorA.x, m_localAnchorA.y);
|
|
b2Dump(" jd.localAnchorB.Set(%.9g, %.9g);\n", m_localAnchorB.x, m_localAnchorB.y);
|
|
b2Dump(" jd.referenceAngle = %.9g;\n", m_referenceAngle);
|
|
b2Dump(" jd.stiffness = %.9g;\n", m_stiffness);
|
|
b2Dump(" jd.damping = %.9g;\n", m_damping);
|
|
b2Dump(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
|
|
}
|